[1]黄心中.关于H.Silverman猜想的反例[J].华侨大学学报(自然科学版),1992,13(3):299-301.[doi:10.11830/ISSN.1000-5013.1992.03.0299]
 Huang Xinzhong,Department of,Management Information,et al.Counter Examples to H. Silverman’s Conjecture[J].Journal of Huaqiao University(Natural Science),1992,13(3):299-301.[doi:10.11830/ISSN.1000-5013.1992.03.0299]
点击复制

关于H.Silverman猜想的反例()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第13卷
期数:
1992年第3期
页码:
299-301
栏目:
出版日期:
1992-07-20

文章信息/Info

Title:
Counter Examples to H. Silverman’s Conjecture
作者:
黄心中
华侨大学管理信息科学系
Author(s):
Huang Xinzhong Department of Management Information Science
关键词:
星像函数 凸像函数 系数序列
Keywords:
starlike function convex function coefficient sequence
DOI:
10.11830/ISSN.1000-5013.1992.03.0299
摘要:
H. Silverman考虑了Szego定理的一般情形,提出下列猜想:设 f(z)是单位圆U={|z|<1}内的解析、单叶凸函数,{a■是f(z)在z=0的Talor展式的系数序列,a0=0,a1=1,若{a■=0是{an}的任一子序列(有限或无限),则由{anj}■所组成的Talor展式在{|z|<1/4}内为凸像,在{1=1<1/2}内为星像。本文指出该猜想不成立。
Abstract:
Taking account of the generality of Szego theorem, H. Silverman put forward the following conjecture: Suppose the function f(z) is analytic, univalent and convex in the unit disk U={|z|< 1}; {an}n-1∞ is the coefficient sequence of Talor expansion of f(z)

相似文献/References:

[1]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
 ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(3):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]

更新日期/Last Update: 2014-03-22