[1]梁学信.双退缩非线性抛物型方程的初边值问题解的存在性[J].华侨大学学报(自然科学版),1990,11(4):321-330.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
 Liang Xuexin.The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1990,11(4):321-330.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
点击复制

双退缩非线性抛物型方程的初边值问题解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第11卷
期数:
1990年第4期
页码:
321-330
栏目:
出版日期:
1990-10-20

文章信息/Info

Title:
The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations
作者:
梁学信
华侨大学管理信息科学系
Author(s):
Liang Xuexin
关键词:
抛物型方程 非线性 存在性 广义解 双退缩 初边值问题 整体解
Keywords:
parabolic equation non-linear existence generalized solution double degenerate initial boundary value problem global solution
DOI:
10.11830/ISSN.1000-5013.1990.04.0321
摘要:
本文讨论一类双退缩非线性抛物型方程的初边值问题(1),并用 Galerkin 方法,在f(x,t,u,u_x)较为一般的情况下,证明整体解的存在性.
Abstract:
The author discusses in this paper the initial boundary value double degenerate non-linear parabolic equations(1).The existence of global solutions under more generalized condition of f(x,t,u,ux)is demonstrated by Galerkin method.

相似文献/References:

[1]梁汲廷.非一致抛物型方程广义解弱最大值原理的一个证明[J].华侨大学学报(自然科学版),1983,4(1):14.[doi:10.11830/ISSN.1000-5013.1983.01.0014]
[2]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[3]王永初.现代控制理论与工程控制的衔接技术[J].华侨大学学报(自然科学版),1988,9(2):213.[doi:10.11830/ISSN.1000-5013.1988.02.0213]
 Wang Yongchu.Linking up Modern Control Theery with Process Control[J].Journal of Huaqiao University(Natural Science),1988,9(4):213.[doi:10.11830/ISSN.1000-5013.1988.02.0213]
[4]王建成,陈燊年.磁各向异性的毕奥-萨伐尔定律及其应用[J].华侨大学学报(自然科学版),1989,10(2):125.[doi:10.11830/ISSN.1000-5013.1989.02.0125]
 Wang Jiancheng,Chen Xinnian.Biot-Savart Law of Magnetic Anisotropy and Its Application[J].Journal of Huaqiao University(Natural Science),1989,10(4):125.[doi:10.11830/ISSN.1000-5013.1989.02.0125]
[5]梁学信.拟线性退缩抛物型方程解的弱最大值原理和渐近性[J].华侨大学学报(自然科学版),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
 Liang Xuexin.Weak Maximum Principle and Asymptotic Property Displayed by the Solution of Quasilinear Degenerate Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
[6]方德平,林赞生,陈銧.平面刚架稳定问题的一种非线性分析方法[J].华侨大学学报(自然科学版),1992,13(3):358.[doi:10.11830/ISSN.1000-5013.1992.03.0358]
 Fang Deping,Lin Zansheng,Chen Guang,et al.A Non-Linear Method for Analysing the Stability of Plane Frames[J].Journal of Huaqiao University(Natural Science),1992,13(4):358.[doi:10.11830/ISSN.1000-5013.1992.03.0358]
[7]方德平.预应力砼梁截面的预应力度与弯曲延性分析[J].华侨大学学报(自然科学版),1995,16(3):272.[doi:10.11830/ISSN.1000-5013.1995.03.0272]
 Fang Deping.Analysis of Prestressing Degree and Bending Ductility at the Section of Prestressed Concrete Beam[J].Journal of Huaqiao University(Natural Science),1995,16(4):272.[doi:10.11830/ISSN.1000-5013.1995.03.0272]
[8]方德平,林雨生.部分预应力砼连续梁的弯矩-曲率分析法[J].华侨大学学报(自然科学版),1996,17(3):260.[doi:10.11830/ISSN.1000-5013.1996.03.0260]
 Fang Deping,Lin Yusheng.Analysis of Partially prestressed Concrete ContinuousBeam by Bending Moment-Curvature Method[J].Journal of Huaqiao University(Natural Science),1996,17(4):260.[doi:10.11830/ISSN.1000-5013.1996.03.0260]
[9]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[10]方德平.大偏心体外预应力节段梁的非线性分析[J].华侨大学学报(自然科学版),2005,26(2):152.[doi:10.3969/j.issn.1000-5013.2005.02.011]
 Fang Deping.Nonlinear Analysis of the Externally Prestressed Segmental Beams with Large Eccentricity[J].Journal of Huaqiao University(Natural Science),2005,26(4):152.[doi:10.3969/j.issn.1000-5013.2005.02.011]

备注/Memo

备注/Memo:
福建省科学基金资助课题
更新日期/Last Update: 2014-03-22