[1]陈銧.Cauchy 应变公式的几何解释及其应用[J].华侨大学学报(自然科学版),1990,11(1):45-51.[doi:10.11830/ISSN.1000-5013.1990.01.0045]
 Chen Guang.A Geometric Interpretation of Cauchy′s Strain Formula and Its Applications[J].Journal of Huaqiao University(Natural Science),1990,11(1):45-51.[doi:10.11830/ISSN.1000-5013.1990.01.0045]
点击复制

Cauchy 应变公式的几何解释及其应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第11卷
期数:
1990年第1期
页码:
45-51
栏目:
出版日期:
1990-01-20

文章信息/Info

Title:
A Geometric Interpretation of Cauchy′s Strain Formula and Its Applications
作者:
陈銧
华侨大学土木工程系
Author(s):
Chen Guang
关键词:
向量 张量 应变分量
Keywords:
vector tensor components of strain
DOI:
10.11830/ISSN.1000-5013.1990.01.0045
摘要:
本文通过对假想的单位球面上点的微小位移的分析,赋予由 Cauchy 应变公式给出的应变向量以明确的几何意义,从而使小变形应变张量中一向具有不同几何解释的正应变和剪应变分量具有统一的几何解释,并举例说明了它的有效应用.
Abstract:
By studying the displacement of points on the surface of an imaginary unit sphere,the strain vector defined by Cauchy’s strain formula is given a clear geometric meaning.The geometric interpretations of the normal and shearing components of a strain tenso
更新日期/Last Update: 2014-03-22