[1]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359-363.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(4):359-363.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
点击复制

拟共形映照的一个极值问题()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第10卷
期数:
1989年第4期
页码:
359-363
栏目:
出版日期:
1989-10-20

文章信息/Info

Title:
An Extremal Problem for Quasiconformal Mappings
作者:
赖万才
华侨大学应用数学系
Author(s):
Lai Wancai
关键词:
拟共形映照 极值问题 非欧尺度
Keywords:
quasi-conformal mappings extremal problem non-Euclidean metric
DOI:
10.11830/ISSN.1000-5013.1989.04.0359
摘要:
本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x2)(1-tx2))1/2。它是夏道行的一个定理的拓广。
Abstract:
In this paper the author proves: If f(z) is a quasiconformal mapping of the extended complex plane onto itself such that f(0)=0, f(1)=1 and f(∞)=∞, then |f(z)-z|≤4π rK (1/1+r)K(r1+r)lig Q holds for any r, |z|≤r and |f(z)|≤r, where K (t)=integral from 1 to

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(4):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(4):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[3]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(4):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[4]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(4):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[5]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[6]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(4):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[7]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(4):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[8]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[9]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(4):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[10]韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
 HAN Xue,HUANG Xin-zhong.Hyperbolic Area Distortion under Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2007,28(4):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]

更新日期/Last Update: 2014-03-22