[1]苏远生.色散方程ut=auxxx的两个半显式绝对稳定差分格式[J].华侨大学学报(自然科学版),1989,10(2):110-116.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
 Su Yuansheng.Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx[J].Journal of Huaqiao University(Natural Science),1989,10(2):110-116.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
点击复制

色散方程ut=auxxx的两个半显式绝对稳定差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第10卷
期数:
1989年第2期
页码:
110-116
栏目:
出版日期:
1989-04-20

文章信息/Info

Title:
Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx
作者:
苏远生
华侨大学应用数学系
Author(s):
Su Yuansheng
关键词:
差分格式 绝对稳定 色散方程 半显式 误差阶 显式格式 数值例 稳定性分析 构造 截断
DOI:
10.11830/ISSN.1000-5013.1989.02.0110
摘要:
本文对色散方程 ut=auxxx构造了两个半显式的、绝对稳定的差分格式.其截断误差阶为O(rτh+τh+h4).数值例子证实这两个差分格式是很有效的.
Abstract:
For dispersion equation ut=auxxx,this paper establishes two absolutely sta- ble semi-explict difference schemes which bear a truncation error of O(rτh+τh +h4)order. They are proved by numerical examples to be very effective.

相似文献/References:

[1]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[2]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[3]王子丁.解高维Schrodinger方程的一类稳定的显格式[J].华侨大学学报(自然科学版),1995,16(1):13.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
 Wang Ziding.A Class of Stable Explicit Schemes for Solving Higher Dimensional Schr dinger Equations[J].Journal of Huaqiao University(Natural Science),1995,16(2):13.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
[4]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[5]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[6]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[7]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(2):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[8]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[9]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[10]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[11]曾文平.一族绝对稳定的高精度差分格式[J].华侨大学学报(自然科学版),1994,15(3):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
 Zeng Wenping.A Family of Absolutely Stable and High Accurate Difference Schemes[J].Journal of Huaqiao University(Natural Science),1994,15(2):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]

更新日期/Last Update: 2014-03-22