[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430-437.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(4):430-437.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
点击复制

高精度和大直径内螺纹挤压攻丝的机理与实践()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第8卷
期数:
1987年第4期
页码:
430-437
栏目:
出版日期:
1987-10-20

文章信息/Info

Title:
A High Precision and Large Diameter Internal Threading by Extrusion
作者:
夏正权沈子镛
华侨大学华侨大学; 华侨大学大连机车车辆厂
Author(s):
Xia Zhengquan Shen Jiyong
关键词:
大直径内螺纹 高精度 挤压 切削丝锥 攻丝 位置精度 螺纹精度 螺纹底孔 表面光洁度 挤丝
DOI:
10.11830/ISSN.1000-5013.1987.04.0430
摘要:
本文在多年试验和实践基础上,提出一种对大直径的内螺纹的高精度挤压加工方法,(在此之前其应用仅对铝、铜等有色金属和低炭结构钢并局限于16mm以下小直径)。总结出内螺纹的螺纹精度直接取决于丝锥的精度,而螺纹孔的位置精度却有赖于攻丝前螺纹底孔的位置精度。到本文发表时止,已成功地发展出一种高速精钻工艺来制备铬钼合金钢连杆的螺纹底孔,和一种尺寸达22—36mm的系列无槽丝锥的挤压攻丝技术以精加工内螺纹。其结果是一次挤压可获得一级螺纹精度和V7的表面光洁度,螺纹抗拉强度增加20—30%,抗剪强度增加5—10%,表面硬
Abstract:
This paper presents a technique of high precision and large diameter internal threading, with the intention of widening the use of internal threading by extrusion. Up to now, its use remains within the limits of non-ferrous metal like Al, Cu, and low-carb

相似文献/References:

[1]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[2]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(4):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[3]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(4):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[4]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[5]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(4):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[6]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(4):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[7]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(4):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[8]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[9]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(4):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[10]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
 Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(4):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]

更新日期/Last Update: 2014-03-22