[1]魏祖烈,郭玉端.具有棱凝聚度≤1的顶点之个数估计[J].华侨大学学报(自然科学版),1986,7(4):353-356.[doi:10.11830/ISSN.1000-5013.1986.04.0353]
Wei Zulie,Guo Yuduan.The Estimation of the Number of Vertices as Its Edge-Cohesiveness ≤1 in a Graph[J].Journal of Huaqiao University(Natural Science),1986,7(4):353-356.[doi:10.11830/ISSN.1000-5013.1986.04.0353]
点击复制
具有棱凝聚度≤1的顶点之个数估计()
《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]
- 卷:
-
第7卷
- 期数:
-
1986年第4期
- 页码:
-
353-356
- 栏目:
-
- 出版日期:
-
1986-10-20
文章信息/Info
- Title:
-
The Estimation of the Number of Vertices as Its Edge-Cohesiveness ≤1 in a Graph
- 作者:
-
魏祖烈; 郭玉端
-
华侨大学; 福州大学
- Author(s):
-
Wei Zulie; Guo Yuduan
-
-
- 关键词:
-
凝聚度; 个数估计; 最小截集; 顶点; 棱连通度; 简单图; 证明; 数目; 关联; 端点
- DOI:
-
10.11830/ISSN.1000-5013.1986.04.0353
- 摘要:
-
本文证明:当简单图G的棱连通度λ=1或当G的阶n≤2λ(λ≥2)时,G的任何点x部满足其梭凝聚度c’(x)≤1; 而当n>2λ(λ≥2)时,满足c’(x)≤l的顶点x的数目至少有(λ+2)个。
- Abstract:
-
Let G be a connected graph,λ=λ(G) be the edge-connectivity of G, C’(x)=λ(G)-λ(G-x) be the edge-cohesiveness of the vertex x, and n be the order of G. We have then Theorem 1. If λ=1 or n≤2λ(λ≥2), always satisfies C’(x)≤1 for any vertex X of G. Theorem 2. I
更新日期/Last Update:
2014-03-22