[1]梁学信.非一致拟线性抛物型方程广义解的极值原理[J].华侨大学学报(自然科学版),1985,6(1):23-32.[doi:10.11830/ISSN.1000-5013.1985.01.0023]
 Liang Xuexin.Maximum Principle for the Generalized Solutions of Quasi-Linear Nonuniformly Parabolic Epuations[J].Journal of Huaqiao University(Natural Science),1985,6(1):23-32.[doi:10.11830/ISSN.1000-5013.1985.01.0023]
点击复制

非一致拟线性抛物型方程广义解的极值原理()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第6卷
期数:
1985年第1期
页码:
23-32
栏目:
出版日期:
1985-01-20

文章信息/Info

Title:
Maximum Principle for the Generalized Solutions of Quasi-Linear Nonuniformly Parabolic Epuations
作者:
梁学信
华桥大学数学系
Author(s):
Liang Xuexin
关键词:
拟线性抛物型方程组 广义解 极值原理 定理 一致 内插不等式 椭园 范数 非负函数 常数
DOI:
10.11830/ISSN.1000-5013.1985.01.0023
摘要:
本文讨论非一致拟线性抛物型方程和一类方程组的广义解的极值原理,结果由定理2和定理3给出,它们是椭园型和一致抛物型方程相应结果的推广。
Abstract:
In this paper we discuss the maximum principle for the generlized solutions of quasi-linear nonuniformly parabolic equations and a type systems. the results are giver in Theorem 2 and Theorem 3, Which are extensions of the corresponding results of ellipti

相似文献/References:

[1]梁学信,梁汲廷,吴在德,等.非一致二阶线性抛物型方程广义解的弱最大值原理[J].华侨大学学报(自然科学版),1982,3(2):9.[doi:10.11830/ISSN.1000-5013.1982.02.0009]
[2]梁汲廷.非一致抛物型方程广义解弱最大值原理的一个证明[J].华侨大学学报(自然科学版),1983,4(1):14.[doi:10.11830/ISSN.1000-5013.1983.01.0014]
[3]梁学信.非一致线性抛物型方程广义解的存在性及唯一性[J].华侨大学学报(自然科学版),1985,6(4):361.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
 Liang Xuexin.The Existence and Uniqueness of the Generalized Solutions for Non-uniformly Linear parabolic Equations[J].Journal of Huaqiao University(Natural Science),1985,6(1):361.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
[4]梁学信.双退缩非线性抛物型方程的初边值问题解的存在性[J].华侨大学学报(自然科学版),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
 Liang Xuexin.The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1990,11(1):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
[5]梁学信.拟线性退缩抛物型方程解的弱最大值原理和渐近性[J].华侨大学学报(自然科学版),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
 Liang Xuexin.Weak Maximum Principle and Asymptotic Property Displayed by the Solution of Quasilinear Degenerate Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1991,12(1):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
[6]梁学信,梁■廷.脱化抛物型方程广义解梯度的Hlder连续性[J].华侨大学学报(自然科学版),1992,13(1):1.[doi:10.11830/ISSN.1000-5013.1992.01.0001]
 Liang Xuexin,Liang Xiting.The Hlder Continuity of the Gradient Demonstrated by the Generalized Solutions of Degenerate Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1992,13(1):1.[doi:10.11830/ISSN.1000-5013.1992.01.0001]
[7]梁学信.对角型抛物型方程组广义解的Hlder连续性[J].华侨大学学报(自然科学版),1993,14(3):274.[doi:10.11830/ISSN.1000-5013.1993.03.0274]
 Liang Xuexin.Holder Continuity of Generalized Solution for the Parabolic Equations of Diagonal Form[J].Journal of Huaqiao University(Natural Science),1993,14(1):274.[doi:10.11830/ISSN.1000-5013.1993.03.0274]
[8]梁学信.一类退缩抛物型方程解的性质[J].华侨大学学报(自然科学版),1993,14(4):403.[doi:10.11830/ISSN.1000-5013.1993.04.0403]
 Liang Xuexin,Dapartment of,Mangement Information,et al.The properties of the solutions to One Class of Degenerate parabolic Equations[J].Journal of Huaqiao University(Natural Science),1993,14(1):403.[doi:10.11830/ISSN.1000-5013.1993.04.0403]
[9]梁学信.一类拟线性抛物型方程组解的先验估计[J].华侨大学学报(自然科学版),1984,5(2):30.[doi:10.11830/ISSN.1000-5013.1984.02.0030]
[10]梁学信.拟线性抛物型方程组广义解的存在性[J].华侨大学学报(自然科学版),1986,7(4):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
 Liang Xuexin.The Existence of the Generalized Solutions for Quasi-Linear Systems of Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1986,7(1):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]

更新日期/Last Update: 2014-03-22