Journal of Huagiao University (Natural Science)

文章编号: 1000-5013(2011)06-0718-03

超空间上 罗混合性的一点注记

许清,陈尔明

(华侨大学 数学科学学院,福建 泉州 362021)

摘要: 设(X,T)为度量空间,T: $X \to X$ 是连续映射. 考虑由 X 的非空紧子集 $_{\kappa}(X)$ 和由度量 d 诱导的 Hausdorff 度量构成的超空间系统($_{\kappa}(X)$, $_{T}$),且 T: $_{\kappa}(X) \to _{\kappa}(X)$, $_{T}$ (K) = {T(x): $x \in K$ }, $K \in _{\kappa}(X)$. 由此得到在 \mathscr{F} 为滤子时,T 的 \mathscr{F} 混合性与 \overline{T} 的 \mathscr{F} 混合性之间的联系.

关键词: \mathcal{F} -混合的; \mathcal{F} -传递的; 超空间; 滤子; 族

中图分类号: ○ 189.11

文献标志码: A

研究系统的混合性是动力系统的重要课题之一,而系统的混合性是通过系统的传递性来表现的[1]. Roman-Flores [2]证明了 \overline{T} 是传递的,蕴含着 T 是传递的,反之却不成立. Banks [3] 中证明了 \overline{T} 的混合性和 T 的混合性之间的联系. Gottschalk 和 Hedlund 最早使用族的方法研究动力系统,其后 Akin 系统地介绍了族的方法,而且给出了 \mathcal{F} 混合性的定义 [4]. 本文介绍(X,T)的 \mathcal{F} 混合性与其诱导超空间($\kappa(X)$, \overline{T})的 \mathcal{F} 混合性之间的联系.

1 基本假设

对于拓扑空间(X,T), \overline{T} 是由 T 诱导的且定义在 $\kappa(X) = \{K \subset X, K \in X \text{ 的紧子集}\}$ 上的连续映射,对 $(\kappa(X),\overline{T})$ 赋予 Vietories 拓扑,易知它也为拓扑空间,且其拓扑基为

$$v(U_1, \cdots, U_k) = \{K \in \kappa(K) : K \subset \bigcup_{i=1}^k U_i \coprod K \cap U_i \neq \emptyset, i = 1, \cdots, k\}.$$

其中: U_1, U_2, \dots, U_n 为 X 的非空开子集.

当(X,d)为度量空间时,那么空间 $\kappa(X)$ 被赋予 Hausdorff 度量 H,即

$$H(A,B) = \inf\{\varepsilon: B_{\varepsilon}(A) \supset B \mid A \subset B_{\varepsilon}(B)\}.$$

其中: $B_{\varepsilon}(A) = \{x \in X, d(x, A) \leq \varepsilon\}; A, B \in \kappa(X).$ 此度量与 Vietories 拓扑是相兼容的^[5].

2 相关定义

设 Z_+ 为正整数构成的集合,用 $P=P(Z_+)$ 表示 Z_+ 的所有子集构成的集合.

定义 $\mathbf{1}^{[1]}$ P 的非空子集 \mathcal{F} 称作族,如果它满足遗传向上性,即对于 F_1 , F_2 , $F_1 \in \mathcal{F}$ 且 $F_1 \subseteq F_2$,则有 $F_2 \in \mathcal{F}$.

定义 $2^{[1]}$ Z_+ 的一个子集族 \mathcal{F} 称为一个滤子,是指它满足:

- (1) $\emptyset \notin \mathcal{F}$;
- (2) 如果 $F_1 \in \mathcal{F}$ 且 $F_1 \subseteq F_2$,那么有 $F_2 \in \mathcal{F}$;
- (3) $F_1, F_2 \in \mathcal{F}, F_1 \cap F_2 \in \mathcal{F}$.

定义 3^[4] 动力系统(X,T)是 \mathscr{F} -传递的,如果对 X 的任意非空开子集 U,V,及族 \mathscr{F} ,则回复时间集 $N(U,V)=\{n\in Z_+: T^nU\cap V\neq\emptyset\}\in\mathscr{F}$.

收稿日期: 2010-07-28

通信作者: 陈尔明(1950-),男,教授,主要从事拓扑动力系统的研究. E-mail; ermingchen@hqu. edu. cn.

定义 4 动力系统(X,T)是完全 \mathcal{F} -传递的,如果对 $\forall n \in \mathbb{Z}_+, (X^n,T^n)$ 是 \mathcal{F} -传递的.

定义 5^[4] 动力系统(X,T)是 \mathscr{F} -混合的,如果系统(X \times X,T \times T)是 \mathscr{F} -传递的,即对 X 的任意非空 开子集 $U_1,U_2,V_1,V_2,N(U_1\times U_2,V_1\times V_2)=N(U_1,V_1)\cap N(U_2,V_2)\in\mathscr{F}$.

3 定理及主要证明

引理1 设(X,T)是动力系统, \mathcal{F} 是滤子,对于连续映射 T,有:

- (1) 如果 T 是 \mathcal{F} -混合的,则 T 是完全 \mathcal{F} -传递的;
- (2) 如果 T 是 \mathcal{F} 混合的,且 U_1 , U_2 ,… , U_n , V_1 , V_2 ,… , V_n 是 X 的非空开子集,那么存在 $F \in \mathcal{F}$,使得 $F \subset N(U_i,V_i)$, $i=1,\dots,n$;
- (3) 如果 T 是 \mathcal{F} 混合的当且仅当对 X 的任意的非空开子集 U,V,那么存在 $F \in \mathcal{F}$,使得 $F \subset N(U,V)$ 目 $F \subset N(V,V)$:
- (4) 如果 T 是 \mathcal{F} -混合的当且仅当对 X 的任意非空子集 U,V,W,那么存在 $F \in \mathcal{F}$,使得 $F \subset N(U,V)$ 且 $F \subset N(V,W)$.

证明 (1) 假设 T 是 \mathcal{F} -混合的,要证明 T 是完全 \mathcal{F} -传递的,则需要证明 $(X^{(n)}, T^{(n)})$ 是 \mathcal{F} -传递的 $\forall n \in \mathbb{N}$. 这里, $X^{(n)} = X \times X \times \cdots \times X$, $X^{(n)} = X \times X \times \cdots \times X$, $X^{(n)} = X \times X \times X \times \cdots \times X$, $X^{(n)} = X \times X \times X \times \cdots \times X$, $X^{(n)} = X \times X \times X \times \cdots \times X$, $X^{(n)} = X \times$

$$N(U_1 \times U_2 \times \cdots \times U_n, V_1 \times V_2 \times \cdots \times V_n) \in \mathcal{F}$$

即可.

由于有

$$N(U_1 \times U_2 \times \cdots \times U_n, V_1 \times V_2 \times \cdots \times V_n) = \bigcap_{i=1}^n N(U_i, V_i),$$

且 T 是 \mathcal{F} -混合的,那么 $(X \times X, T \times T)$ 是 \mathcal{F} -传递的,从而有

$$N(U_i \times U_{i+1}, V_i \times V_{i+1}) = N(U_i, V_i) \cap N(U_{i+1}, V_{i+1}) \in \mathcal{F}.$$

由于有

$$\bigcap_{i=1}^{n} N(U_{i}, V_{i}) \in N(U_{i}, V_{i}) \cap N(U_{i+1}, V_{i+1})$$
,

根据滤子的性质(定义 2),可知 $\prod_{i=1}^{n} N(U_i, V_i) \in \mathcal{F}$,从而说明有

$$N(U_1 \times U_2 \times \cdots \times U_n, V_1 \times V_2 \times \cdots \times V_n) \in \mathcal{F}$$
.

所以,T 是完全 \mathcal{F} -传递的.

(2) 假设 T 是 \mathcal{F} -混合的,根据 (1) 可知, T 是完全 \mathcal{F} 传递的.那么,对于 X 的任意的非空开子集 $U_1,U_2,\cdots,U_n,V_1,V_2,\cdots,V_n$,有

$$N(U_1 \times U_2 \times \cdots \times U_n, V_1 \times V_2 \times \cdots \times V_n) = \bigcap_{i=1}^n N(U_i, V_i) \in \mathscr{F},$$

则令 $F = \bigcap_{i=1}^{n} N(U_i, V_i)$ 即可.

(3) 设 T 是 \mathcal{F} 混合的,令 $U_1 = U$, $U_2 = V$, $V_1 = V_2 = V$,根据(2)即可证得. 反之,对于 X 的任意的非空开子集 U,V,存在 $F \in \mathcal{F}$,使得 $F \subset N(U,V)$ 且 $F \subset N(V,V)$,从而有

$$F \subset N(U,V) \cap N(V,V) = N(U \times V,V \times V),$$

所以 $N(U \times V, V \times V) \in \mathcal{F}$. 这便可说明 $(X \times X, T \times T)$ 是 \mathcal{F} -传递的,从而 T 是 \mathcal{F} -混合的.

(4) 设 T 是 \mathcal{F} -混合的,令 $U_1 = U$, $U_2 = V$, $V_1 = V$, $V_2 = W$,根据(2)即可证得. 反之,对于 X 的任意的非空开子集 U,V,W,存在 $F \in \mathcal{F}$,使得 $F \subset N(U,V)$ 且 $F \subset N(V,W)$,从而有

$$F \subset N(U,V) \cap N(V,W) = N(U \times V,V \times W),$$

所以 $N(U \times V, V \times W) \in \mathcal{F}$. 这便可说明了 $(X \times X, T \times T)$ 是 \mathcal{F} 传递的,从而 T 是 \mathcal{F} 混合的.

定理 1 设(X,T)是动力系统, \mathscr{F} 是滤子, \overline{T} : $\kappa(X) \rightarrow \kappa(X)$ 是由 T 诱导的连续映射,那么下面 3 个条件等价.

(1) T 是 \mathcal{F} -混合的.

- (2) \overline{T} 是 \mathcal{F} -混合的.
- (3) T 是 \mathcal{F} -传递的.

证明 (1) 蕴含(2). 假设 T 是 \mathscr{F} -混合的,由引理(1)可得知, T 的 m 次乘积 $\underline{T \times T \times \cdots \times T}$: $X \times T$

 $X \times \cdots \times X \rightarrow X \times X \times \cdots \times X (\forall m \in N)$ 是 \mathcal{F} -传递的.

要证明 T 是 \mathscr{F} -混合的,只需证明 $\kappa(X)$ 的 Vietories 拓扑基中的任意元素 $v(U_1^i, \dots, U_k^i)$, $v(V_1^i, \dots, V_k^i)$,i=1,2,存在 $F \in \mathscr{F}$,使得 $F \subset N(v(U_1^i, \dots, U_k^i), v(V_1^i, \dots, V_k^i))$,i=1,2.

事实上,由引理(2)可知,存在 $F \in \mathcal{F}$,使得 $F \subset N(U_j^i, V_j^i)$, $i=1,2;j=1,\cdots,k$.由于 \mathcal{F} 为滤子,则可得 $N(U_j^i, V_j^i) \in \mathcal{F}$, $i=1,2;j=1,\cdots,k$,从而 $\bigcap_{i=1}^2 \bigcap_{j=1}^k N(U_j^i, V_j^i) \in \mathcal{F}$.

那么,对任意一个 $n \in \bigcap_{i=1}^{2} \bigcap_{j=1}^{k} N(U_{j}^{i}, V_{j}^{i})$,选取 $x_{i,j} \in U_{j}^{i}$,使得 $y_{i,j} = T^{n}(x_{i,j}) \in V_{j}^{i}$, $i = 1, 2, j = 1, \dots, k$. 定义 $K_{1} = \{x_{1,1}, \dots, x_{1,k}\}$, $K_{2} = \{x_{2,1}, \dots, x_{2,k}\}$. 因此, $K \in v(U_{1}^{i}, \dots, U_{1}^{i})$, $\widetilde{T}^{n}(K_{i}) \in v(V_{1}^{i}, \dots, V_{k}^{i})$, $i = 1, 2, i \in \mathbb{N}$. 2. 这便说明 $T \in \mathcal{F}$ 混合的.

- (2) 蕴含(3). 由于 \tilde{T} 是 \mathcal{F} -混合的,根据引理(1),那么对任意的 $n \in N$,($X^{(n)}$ $T^{(n)}$)是 \mathcal{F} -传递的,从而它是 \mathcal{F} -传递的.
- (3) 蕴含(1). 要证明 T 是 \mathcal{F} -混合的,根据引理(4),只需证明对 X 的任意非空开子集 U, V_1 , V_2 存在 $F \in \mathcal{F}$,使得 $F \subset N(U,V_1)$ 且 $F \subset N(U,V_2)$.

事实上,由于 \widetilde{T} 是 \mathcal{F} 传递的,那么可以找到 $K \in v(U)$,使得 $\widetilde{T}^n(K) \in v(V_1,V_2)$, $\forall n \in F$. 选取 $x,y \in K \subset U$,使得 $\widetilde{T}^n(x) \in V_1$, $\widetilde{T}^n(y) \in V_2$. 这说明 $\mathcal{F} \subset N(U,V_1)$ 且 $\mathcal{F} \subset N(U,V_2)$,从而有 $N(U \times U,V_1 \times V_2) = N(U,V_1) \cap N(U,V_2) \in \mathcal{F}$,

即 T 是 \mathcal{F} -混合的.

参考文献:

- 「1〕 叶向东,黄文,邵松. 拓扑动力系统概论[M]. 北京:科学出版社,2008.
- [2] ROMAN-FLORES H. A note on transitivity in set-valued discrete systems[J]. Chaos, Solitons & Fractals, 2003, 17 (1):99-104.
- [3] BANKS J. Chaos for induced hyperspace maps[J]. Chaos, Solitons & Fractals, 2005, 25(3):681-685.
- [4] SHAO Song, YE Xiang-dong, F-mixing and weak disjointness[J]. Topology and Its Applications, 2004, 135(1):231-
- [5] WICKS K. Fractals and hyperspaces M. Berlin: Springer-Verlag, 1991.

A Note on F-Mixing in Hyperspace Maps

XU Qing, CHEN Er-ming

(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)

Abstract: Suppose (X,T) be a metric space, $T: X \rightarrow X$ a continuous map. If we consider the space $\kappa(X), \overline{T}$ of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d and $\overline{T}: \kappa(X) \rightarrow \kappa(X), \overline{T}(K) = \{T(x): x \in K\}, K \in \kappa(X), \text{ then the aim of this work is to obtain the <math>\mathscr{F}$ -mixing relationships between T and \overline{T} when \mathscr{F} is filter. **Keywords:** \mathscr{F} -mixing; \mathscr{F} -transitive; hyperspace; filter; family

(责任编辑: 黄晓楠 英文审校: 张金顺, 黄心中)