Apr. 2005

文章编号 1000 5013(2005) 02 0220 02

Sierpinski 地毯的 Hausdorff 测度估计

陈应生 陈尔明

(华侨大学数学系, 福建 泉州 362021)

摘要 通过构造 Sierpinski 地毯的一个覆盖, 得出其 Hausdorff 测度的上限估计值.

关键词 Sierpinski 地毯, Hausdorff 测度, Hausdorff 维数, 覆盖

中图分类号 0 174.12

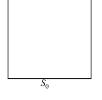
文献标识码 A

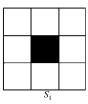
分形集的 Hausdorff 维数和测度的计算是十分困难的, 即使是结构较为正规的分形集, 目前也尚无有效方法. 文 [1] 对 Sierpinski 提出的另一自相似集 Sierpinski 地毯(Carpet) 进行了 Hausdorff 测度的估计, $H^s(S) \leq 1$. 473 1. 本文改进了这个估计, 得出 $H^s(S) \leq 1$. 409 736.

1 基本概念

Sierpinski 地毯的构造是在平面 \mathbb{R}^2 上, 取单位正方形 S_0 , 每边三等分, 用与边平行的线段连接分

点,得到 9 个边长为 $\frac{1}{3}$ 的正方形. 去掉中间一个的内部,得到由 8 个正方形组成的集合,记作 S_1 对 S_1 中每一个正方形重复上述过程,得到集合 S_2 . 上述过程无限进行下去,得到集列 $S_0 \supset S_1 \supset \cdots \supset S_n \supset \cdots$,如图 1 所示. 该非空集合 $S = \bigcap_{n=0}^{\infty} S_n$,称为由 S_0 生成的 Sierpinski 地





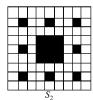


图 1 Sierpinski 地毯的构造

毯. S_n 由 8^n 个边长为 $\frac{1}{3^n}$ 的正方形构成,它们称为 S_n 的n 阶基本正方形,记为 I_{3^n} . 每个 I_{3^n} 可生成与 S 有相似比为 $\frac{1}{3^n}$ 的几何相似集合,记作 $\frac{1}{3^n}S$. 显然 $I_{3^n}\cap S=\frac{1}{3^n}S$. 易知 S 的 Hausdorff 维数为 $^{(1)}s=\dim_H(S)=\frac{\log 8}{\log 3}\approx 1$. 892 789 261. S 的 Hausdorff 测度可定义为 $H^s(S)=\lim_{\delta\to 0}H^{\delta}(S)$, $H^{\delta}(S)=\inf\{\sum_{i=1}^{\infty}|U_i|^s,\ S\subset S\}$

 $\bigcup_{i=1}^{\infty} U_i, \mid U_i \mid \leq \delta \, \, \delta \!\!> \, \, 0 \}.$

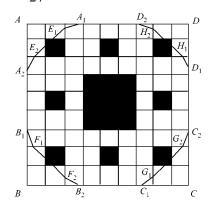
号|理 $\mathbf{1}^{(1)}$ $H^{s}(\frac{1}{3^{n}}-S)=\frac{1}{8^{n}}H^{s}(S).$ 号|理 $\mathbf{2}^{(1)}$ $H^{s}(\bigcup_{i=1}^{s}S^{(i)}) \leqslant \sum_{i=1}^{s}H^{s}(S^{(i)}).S^{(i)} \subset S.$

2 定理及证明

定理 H^s(S) ≤1.409 733 6. 这是本文所得的结果.

证明 类似文献 [2], 易证对于 Sierpinski 地毯 S 的任意 δ 覆盖 $\alpha = \{U_i, i \geq 0\}$, 有 $H^s(S) = H^s(S)$ $\leqslant \sum_{i=1}^{\infty} |U_i|^s$. 如图 2 所示, 以 S_0 的 4 边上截取长度为 $\frac{6}{27}$ 的 8 条线段, 记截点为 A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , D_1 ,

 D_2 . 对 S_0 的左上角上的一阶基本正方形如图 3, 在线段 EF 上截取长度等于 $\frac{1}{27}$ 的线段 EE_1 . 在线段 GH 上, 截取长度等于 $\frac{1}{27}$ 的线段 GE_2 . 在其它 3 个一阶基本正方形上, 同样取点 F_1 , F_2 , G_1 , G_2 , H_1 , H_2 . 连接



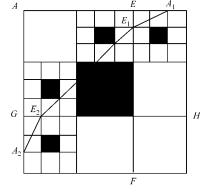


图 2 S₂ 示意图

图 3 S 左上角 $\frac{1}{3}$ S 图

这 16 个点 A_1 , E_1 , E_2 , A_2 , B_1 , F_1 , F_2 , B_2 , C_1 , G_1 , G_2 , C_2 , D_1 , H_1 , H_2 , D_2 , 得到 16 边形 $A_1E_1E_2A_2B_1F_1F_2B_2C_1G_1G_2C_2D_1H_1H_2D_2$. 记为 U. 通过计算可得 U 的直径为 $\frac{850}{27}$, 显然 $\delta = \{16$ 边形 U, 4 个五边形分别为 $AA_1E_1E_2A_2$, $BB_2F_2F_1B_1$, $CC_2G_2G_1C_1$, $DD_1H_1H_2D_2\}$ 是 S 的一个 $\frac{850}{27}$ 覆盖 $\delta = \{16$ 边形 对于每个 n 阶基本正方形 I_{3^n} , 可用对角线分成两个等腰直角形, 称为基本三角形, 记为 J_{3^n} , 其腰边长为 $\frac{1}{3^n}$. 五边形 $AA_1E_1E_2A_2$ 可用 $\{1$ 个 I_{3^2} , 12 个 I_{3^3} 和 6 个 $J_{3^3}\}$ 覆盖 $\delta = \{3$ 个 I_{3^3} 一 $\delta = \{3$ 个 I_{3^4} , 2×3 个 I_{3^5} , $2^2 \times 3$ 个 I_{3^6} , ..., $2^{n-2} \times 3$ 个 $I_{3^{n+2}}$, ... $\delta = \{3$ 个 I_{3^4} , 2×3 个 $I_{3^{n+2}}$, ... $\delta = \{3$ 个 $I_{3^{n+2}}$, ... $\delta =$

$$H^{s}(S) \leqslant (\frac{\sqrt{850}}{27})^{s} + 4H^{s}(I_{3^{2}}) + 48H^{s}(I_{3^{3}}) + 96H^{s}(f_{\overline{3}^{3}}) \leqslant (\frac{\sqrt{850}}{27})^{s} + (\frac{4}{8^{2}} + \frac{48}{8^{3}} + \frac{96}{8^{4}})H^{s}(S).$$
 于是, $H^{s}(S) \leqslant \frac{128}{105} \times (\frac{\sqrt{850}}{27})^{s} \approx 1.4097336$. 定理证毕.

参 考 文 献

- 1 陈秀庆. Sierpinski 地毯的 Hausdorff 测度的上限估计[J]. 浙江师范大学学报(自然科学版), 1998, 21(2): 16~18
- 2 周作领. Sierpinski 垫片的 Hausdorff 测度[J]. 中国科学(A), 1997, 27(6): 491~496
- 3 Falconer 著. 分形几何的数学基础及其应用[M] . 曾文曲译. 沈阳: 东北大学出版社, 2001. 9~ 10

Estimating the Hausdorff Measure of a Class of Sierpinski Carpet

Chen Yingsheng Chen Erming

(Department of Mathematics, Huaqiao University, 362021, Quanzhou, China)

Abstract For a special type of Sierpenski carpet, the authors obtain the estimate value of the upper limit of its Hausdorff measure by constructing a covering of Sierpinski carpet.

Keywords Sierpinski capet, Hausdorff measure, Hausdorff dimension, covering

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net