Journal of Huagiao University (Natural Science)

Apr. 2002

文章编号 1000-5013(2002)02-188-03

利用盐效应对丙酮溶媒回收方法的改进

柯凌进 黄 燕 吴雄伟

(① 广州市白云山化学制药厂,② 广州市白云山制药总厂品质部,广州 510515)

摘要 利用盐效应并通过对某原料药合成所产生的母液(丙酮-水体系)进行回收方法的改进,从而改善了常规精馏所存在的不足之处。该改进方法仅在原有基础上,却达到进一步提高产品的质量、延长设备使用寿命和节能的目的。

关键词 溶盐精馏、常规精馏、母液(丙酮-水体系)、回收方法

中图分类号 TO 460.6+4 TO 028.1+3

文献标识码 A

近 10 年来, 国内外学者从盐对气-液平衡影响的研究中, 开发出以溶盐作为分离剂的一种精馏过程的新方法——溶盐精馏 ¹⁾. 这种方法已在工业生产上成功应用. 生产中, 丙酮-水体系虽不形成恒沸物, 但当丙酮的体积分数超过 0.98 以上时, 其相对挥发度已近于 1. 此时, 仍用常规精馏法已很难再进一步分离. 若是利用盐效应, 则可在相对降低生产成本和节约能耗的前提下, 进一步提高丙酮对水的相对挥发度, 使其气液平衡性质得到改善. 这样, 可提高溶媒回收中丙酮的质量及其回收率. 本文正是针对某原料药合成所产生的母液(丙酮-水体系)含有盐酸的特点, 利用质量分数为 0.15 的 N aOH 溶液与其中和所产生的盐, 进行溶盐精馏.同时, 将其与常规精馏法进行比较. 结果表明溶盐精馏法的优点, 在于它能进一步降低生产成本, 提高产品的质量, 延长设备的使用寿命, 且更有利于环保.

1 溶媒回收工艺

1.1 母液(丙酮-水体系)的性质

母液为某原料药合成所产生的丙酮-水母液,显深棕色,有极强的酸性(用酸度计无法测出).其中丙酮的体积分数为 0.933,水的体积分数为 0.052.

- 1.2 母液的预处理 (2,3)
- 1.2.1 常规精馏法对母液的预处理和初蒸 以每 1.000 L 母液加 66 L 质量分数为 0.30 的 NaOH 溶液的比例中和母液,有大量的盐沉淀析出. 调节 pH 值至 $7.0 \sim 7.5$, 固液分离 . 用 N_2 压滤至初蒸罐,盐渣干重 9.5 kg. 其间, 丙酮损失 $0.5\% \sim 1.0\%$ (体积比). 初蒸采用简单蒸馏,气温和液温分别控制在 72 和 78 ,收集馏出液 .
- 1.2.2 溶盐精馏法对母液的预处理 以 1 000 [丙酮母液加 132 [质量分数为 0.15 的

NaOH 溶液的比例进行中和母液. 调节 pH 值至 7.0~7.5, 搅拌均匀, 无沉淀析出现象.

1.3 精馏

常规精馏和溶盐精馏,均采用间歇式精馏方法来分离预处理液.将预处理液分别打入各精馏釜,加热釜液,釜液于 55.5 下全回流 25 min 后,由塔顶馏出产品.馏出液的馏出速度控制在 $30 \text{ L} \cdot \text{h}^{-1}$,回流比控制在 $5 \sim 6$.随着馏出液量的增加,釜温开始逐渐上升,控制釜温在 80 以下.收集馏出液,常规精馏与溶盐精馏丙酮的平均回收率,分别为 94.5%, 95.3%.

1.4 分析仪器

HP 1890 气相色谱仪的色谱柱为 EC 130 mm × 0.53 mm 毛细管柱,柱温 100 ,汽化温度 120 .FID 检测器的检测室温度为 150 ,载气为氮气,流速为 40 mL·min⁻¹. PHS-2C型精密酸度计,701 卡氏滴定仪.

2 结果与讨论

2.1 残余液 pH 值的比较

残余液 pH 值的比较, 如表 1 所示.由表可见, 采用溶盐精馏法后, 残余液的 pH 值明显高于常规精馏法.这使得不锈钢精馏釜的腐蚀敏感性, 随着 pH 值的提高而降低.它降低了不锈钢精馏釜受腐蚀的速度, 从而延长了设备的使用寿命, 以及降低了设备的维修费用.

常规精馏				
批号	pН	批号	рН	
010350090	3.39	01 03 501 80	5. 25	
010350100	3.86	01 03 501 90	5. 54	
010350110	3.50	010350200	5. 58	
010350120	3.72	01 03 502 10	5. 29	
010350130	3.54	01 03 502 20	5. 40	

表 1 残余液 pH 值的比较

2.2 产品组分的比较

产品组分的比较, 如表 2 所示.表中, v 为体积分数.由表可见, 利用盐效应, 能进一步提高丙酮-水的相对挥发度. 丙酮平均含量提高了 0.37%, 平均水分降低了 0.27%, 达到工业丙酮(HG 2-320-66)的一级品指标. 丙酮产品的质量得到进一步的提高.

表 2 产品组分的比较

常规精馏		溶盐精馏			
批号	v 丙酮	vH ₂ O	批号	v丙酮	<i>v</i> H ₂ O
010350090	0.987 5	0. 007 5	010350180	0. 990 5	0.005 4
010350100	0.987 2	0. 007 9	010350190	0. 990 2	0.005 9
010350110	0.986 7	0. 008 2	010350200	0. 990 0	0.004 9
010350120	0.986 4	0.0080	010350210	0. 991 1	0.004 8
010350130	0.987 2	0. 007 8	010350220	0. 990 4	0.005 2

2.3 讨论

表 2 的生产结果表明,在原有设备的基础上,充分利用盐效应,使丙酮-水的气-液平衡性质得到进-2%的投观。水的挥发性降低,更加智知子外离,产品的质量得到进-2%的提高。

NaOH 中和而产生的 NaCl, 它符合在医药工业生产中作为分离剂的溶盐所要求的成本低、化学稳定性高、腐蚀性小、无毒等条件.

3 结束语

溶媒的回收并加以循环使用,是合成药厂降低成本,提高经济效益的必需途径,也是环保的基本要求.在常规精馏的预处理过程中,采用氮气压滤来处理滤渣,丙酮在整个压滤过程中损耗率为0.5%~1.0%(体积比).采用溶盐精馏,不但丙酮的回收率比常规精馏高出0.5%~1.0%,而且提高了丙酮产品的质量,减少了设备的维修费用和对环境的污染.相应地,它却降低了生产成本,降低了环保处理费用,因而实现经济、环境和社会效益的三统一.

参 考 文 献

- 史季芬.化工继续工程教育系列教材——多级分离过程-蒸馏,吸收,萃取,吸附[M].北京:化学工业出版 社.1991.147~154
- 2 袁 一. 化学工程师手册[M]. 北京:机械工业出版社,2000.1 372~1 378
- 3 程能林.溶剂手册[M].第2版.北京:化学工业出版社,1994.464~468

Improving the Recovery Method of Acetone Solvent

by Applying Salt Effect

Ke Lingjin^① Huang Yan^② Wu Xiongwei^①

(1) Guangzhou Baiyunshan Chem. Parmaceutical Co. Ltd.,

2 Dept. of Quality, Guangzhou Baiyunshan Pharmaceutical Co. Ltd., 510515, Guangzhou)

Abstract The recovery of acetone solvent from mother liquor (acetone-H₂O system) produced in the synthesis of a certain raw material drug is improved by making up for the deficiency of conventional rectification. The improved method makes the quality of products further up-grading and the service life of equipment further prolong, and the energy consumption further saving.

 $\textbf{Keywords} \quad \text{rectification by dissolving salt, conventional rectification, mother liquor (acetone-H_2O \ system),} \\ \text{recovery method}$