Apr. 2001

文章编号 1000-5013(2001)02-111-06

拟共形映照的爆破集问题

陈行堤 黄心中

(华侨大学经济管理学院,泉州 362011)

摘要 研究平面拟共形映照的爆破集性质 . 找到了判别平面集合的双曲面积为无限的一个充分 条件, 对径向 K-拟共形映照的双曲面积进行估计, 改进了近期由 Porter 和 Reséndis 所得到的相应

关键词 拟共形映照,双曲几何,爆破集,径向映照,偏差定理 中图分类号 0 174.55 文献标识码 A

问题的提出 1

平面区域 Ω 到区域 Ω 的一个同胚映照 f, 称为区域 Ω 上的 K-拟共形映照 . 如果满足: (1) f 在 Ω 上是 ACL 的; (2) 对几乎所有的 z Ω 满足 Beltrami 方程 $f := \kappa(z) f :$, 其中 ess $\sup_{z \in \mathbb{R}} |\kappa(z)| = k < 1, \ k = (K-1)/(K+1).$ 用 QK 表示单位圆盘 $\Delta = \{z \mid |z| < 1\}$ 到自身上的 K-1拟共形映照族, 记 $Q_K^* = \{f \mid f \mid Q_K, \exists f(z) = z, |z| = 1\}$. 类似于单叶函数的情形, 平面上 $K - Q_K = \{f \mid f \mid Q_K, \exists f(z) = z, |z| = 1\}$. 拟共形映照也有许多重要的性质,例如,边界对应条件, Beltrami 方程的存在性定理,偏差定 理等. 下列著名的 Mori 定理 1 就是其中之一.

Mori 定理 设f(z) Q^K , 且满足标准化条件 f(0) = 0, 则对任何的 $z_1, z_2 = \Delta, z_1 = z_2$, 有 $16^{-1}|z_1-z_2|^K$ $|f(z_1)-f(z_2)|$ $16|z_1-z_2|^{1/K}$.

偏差定理在许多极值问题的研究中得到广泛的应用,受到了极大的关注:若E是平面上的点 集,f 是平面上的K-拟共形映照.那么,f(E)在欧氏测度下有何面积偏差及在双曲测度下有 多大面积等问题, 都吸引着许多学者的研究.因此, 我们将对f(E) 在双曲测度下的面积偏差 问题、进一步进行探讨、旨在刻画其双曲面积为有限与无限、这两种情况的几何特征、

2 几个基本结论

从拟共形映照的基本理论得知, 对于任何可测集合 $E \subset \Omega$, 如果 |E| euc = 0, f 是 Ω 上的 K -拟共形映照,必有f(E) | euc=0(其中f(E)) | euc=0

收稿日期 陈行堤(1976-), 男, 助教 作者简介

和 Reich ¹用参数表示法,证明了 Boyarski ¹提出的猜想:

定理 **A** 对单位圆盘 Δ 的每个可测集合 E, 存在一个常数 α 和一个函数 b(K). 使得对 f $O_K, f(0) = 0$. 有

$$\frac{|f(E)|_{\text{euc}}}{\pi}$$
 $b(K)(\frac{|E|_{\text{euc}}}{\pi})^{K^{-a}}$

成立,其中1 α 40, b(K) > 0. 并且当 K 1 时, b(K) = 1 + O(K - 1).

接着, Astala ⁴ 证明了:

定理 B 设 f Q^{κ} , f(0) = 0, 则对任意的可测集合 $E \subset \Delta$, 有

$$|f(E)|$$
 euc $A(K)|E|^{1/K}$ euc,

其中指数 K^{-1} 是最佳的 . Eremenko 和 Hamilton 61 证明若 f 是 Reimann 球面上的自映照,则它在 Δ 上是 K -拟共形映照 . 它在 Δ 外部是共形的,并且满足标准化条件: 当 z 时,f(z)=z+o(1) . 因此,对任何可测集合 $E\subset \Delta$,有f(E) $e^{uc}=K\pi^{1-1/K}$ E e^{uc} . 因为对每个 $f=Q_K^K$ 都可以通过一个恒等映照,把它延拓成球面上的 K -拟共形映照 . 所以,对类 Q_K^* ,定理 B 有下述更精确的形式 .

推论 1 对 $f O_K^*$ 及任何的集合 $E \subset \Delta$, 有

$$|f(E)|_{\text{euc}} = K\pi^{1-1/K}|E|_{\text{euc}}^{1/K}.$$
 (1)

以上都是研究欧氏测度的情形.很自然地,人们不禁要问到它在别的测度下(比如在双曲测度下)的偏差性质如何,以及是否有类似结论的等等问题.近期,Porter和 Reséndis在文 6]中研究了在双曲测度下的情形.平面上的可测集合 $E \subset \Delta$ 的双曲面积,定义为

$$|E|_{\text{hyp}} = \iint \frac{1}{(1-|z|^2)^2} |dz|^2.$$
 (2)

相应于上半平面 H 上的一个可测集合 $E\subset \Delta$ 的双曲面积为

$$|E|_{\text{hyp}} = \iint_{\mathbb{R}} \frac{1}{(2y)^2} |dz|^2,$$

其中z = x + iy.

按文 6], 爆破集定义为具有 $E|_{hyp}<$ 的集合 E 称为是 K -可爆破的, 如果存在一个 f Q_K , 使得 $|_{f(E)}|_{hyp}=$; 如果对某个 K , E 是 K -可爆破的, 我们就说它是可爆破的. 相应的拟共形映照 f , 也称为爆破的. 下面的例子, 说明在双曲测度的情形下, 拟共形映照的偏差定理比在欧氏测度下的更加复杂.

例 1 固定 0 < a < 1, 令 $\Delta = \{z \mid z \mid < a\}$, 设 $\{T_n\}$, n = 1, 2, ...为一列单位圆盘 Δ 的共形自映照, 而且满足像圆盘 $T_n(\Delta_a)$ 是互不相交的.定义 Δ 到 Δ 自身的映照为

$$f(z) = \begin{cases} T_n[ah^K(a^{-1}T_n^{-1}(z))], & \exists z \quad T_n(\Delta a), \\ z, & \\ \exists z, \end{cases}$$

其中 $h_K(z) = r^{1/K} e^{i\theta}, z = r e^{i\theta}$. 显然f(z) 是 Δ 到 Δ 自身的一个 K-拟共形映照, 因此f Q_K . 置 $a_n = an^{-K/2}$, 定义 $E_n = T_n(\Delta_{a_n})$, $E = E_n$, 则 $E_n = E_{n+1} = \Phi$, n = 1, 2, ..., 而且 $|E|_{hyp} < ...$ 但是, 我们有 $|f(E)|_{hyp} = ...$

对于双曲测度下的有界集、Porter 和 Reséndis 6)证明了:

©定理C20设分hing。Accelen落在wind双曲华径为Pylylis的圆环内,则All rights reserved. http://w

$$b_K(s_1, s_2) \mid E \mid_{\text{hyp}}^K \quad \mid f(E) \mid_{\text{hyp}} \quad B_K(s_1, s_2) \mid E \mid_{\text{hyp}}^{1/K}. \tag{3}$$

因此, 如果 E 位于双曲半径为 s 的圆盘内, 则

$$|f(E)|_{\text{hyp}} = B_K(s) |E|_{\text{hyp}}^{1/K},$$
 (4)

其中
$$b\kappa(s_1, s_2) = \frac{A(K)^{-K}(1-L^{-1}(s_2)^2)^{2K}}{1-\Phi\kappa^{-1}(L^{-1}(s_1)^2)^2}$$
, $B\kappa(s_1, s_2) = \frac{A(K)^{-K}(1-L^{-1}(s_2)^2)^{2/K}}{1-\Phi\kappa(L^{-1}(s_1)^2)^2}$, $\Phi\kappa(r) = \frac{A(K)^{-K}(1-L^{-1}(s_2)^2)^{2/K}}{1-\Phi\kappa(L^{-1}(s_1)^2)^2}$

 $\sup\{|f(r)| | f(r)| | f(r)| \}$, $B_K(s) = B_K(0,s)$, $r = L^{-1}(s) = \frac{e^{2s} - 1}{e^{2s} + 1}$, A(K) 为仅与K 有关的常数,定理 C 说明了在双曲测度下,有界点集都是非爆破的,但对于平面上的无界集是否一

例 2 分式线性受换 z = T(w) = (w - i)/(w + i),将上半平面 $\{w \mid \text{Im} w > 0\}$ 映成单位圆盘 Δ . 定义 E = T(E),其中 $E = \{w \mid w = u + iv, 0 < u < 1, v > 1\}$. 因此,有 $|E|_{\text{hyp}} < v = v$,而且对任何 $|K|_{\text{HYP}} + |E|_{\text{HYP}} < v = v = v$,不是对任何 $|E|_{\text{HYP}} + |E|_{\text{HYP}} < v = v = v = v$,而且对任何 $|E|_{\text{HYP}} + |E|_{\text{HYP}} < v = v = v = v = v = v$ 。

这样,探索拟共形映照下的双曲面积偏差定理显得更加复杂,我们引进下列的定义,

定义 Δ 的一个自映照 f 称为径向的, 如果保持从某个固定点出发的所有双曲射线不变. 不失一般性, 我们可以假定这个固定点就是 0. 因此, 可设 $f(z) = \rho(r, \theta) e^{\theta}$, 其中 $z = re^{\theta}$.

下列的例子提示了,如果 $f = Q_K^*$ 是径向的,双曲面积的偏差将会有一定的界限.

例 3 假设 $f(z) = r^{1/K} e^{i\theta}$,设 $E \subset \Delta - \Delta_a$,0 < a < 1. 容易算出

$$|f(E)|_{\text{hyp}} = \iint_{E} \frac{J_{f}(z)}{(1 - |f(z)|^{2})^{2}} |dz|^{2} = \iint_{E} \frac{1}{(1 - |z|^{2})^{2}} \frac{1}{K} \frac{r^{1/K} r^{1/K - 1}}{r} \frac{(1 - r^{2})^{2}}{(1 - r^{2/K})} |dz|^{2}$$

$$\frac{1}{K a^{2(1 - 1/K)}} \frac{(1 - a^{2})^{2}}{(1 - a^{2/K})^{2}} |E|_{\text{hyp}}.$$

在一般的情形下,假设 $f = Q_k^*$ 是径向的,文 f 证明了下列几个结果

$$K^{-1} = \frac{r \rho_r}{\rho} = K, \quad r^K = \rho = r^{1/K}, \tag{5}$$

$$J_f(z) = |f_z|^2 - |f_{\overline{z}}|^2 = \frac{\rho \rho_r}{r},$$
 (6)

$$\frac{1}{K}r^{2(K-1)} \qquad J_f \qquad K \, r^{2(1-1)K}. \tag{7}$$

基于以上事实, 文 6)还证明了下列定理 D, E.

定理**D** 假设 $f = Q^*$ 且是径向的,则对任意的 $E \subset \Delta - \Delta = 0 < a < 1$ 成立

$$|f(E)|_{\text{hyp}} = \frac{K^3}{\sigma^{2(1-1/K)}} |E|_{\text{hyp}}.$$
 (8)

定理 \mathbf{E} 一个径向拟共形映照 f 是非爆破的. 实际上, 如果 f Q^* 是径向的, 则对任意的 $E\subset \Delta$. 有

$$|f(E)|_{\text{hyp}} = \inf_{0 < a < 1} \left\{ \frac{K \pi^{1 - 1/K}}{\left[1 - \Phi_{K}(a)^{2}\right]^{2}} |E|_{\text{hyp}}^{1/K} + \frac{K^{3}}{a^{2(1 - 1/K)}} |E|_{\text{hyp}} \right\}. \tag{9}$$

定理 E 说明对于径向的拟共形映照 f , 对任何的 K > 1 , 都是非爆破的 . 因此 , 有必要研究其偏差界限 .

○本文研究集合论社拟共形映照下的像区域在边界情形的性态。给出一个判别爆破集

的充分条件.同时,研究径向对称拟共形映照的偏差定理,改进了上述的定理 D,E 的结果.

3 主要结果及其证明

我们证明下列的:

定理 1 假设 f 是一个上半平面 H 到 H 的 K-拟共形映照, 集合 $E \subset H$ 而且 $E \mid_{hyp} < 1$ 如果 f(E) 包含一个端点在边界上的角域. 则 f 是爆破的.

证明 假设 $E \subset H$,且 |E| hyp< ,f 是 H 到 H 的 K-拟共形映照.由此假定,我们不妨设 $f(E) \supset F$, $F = \{w \mid w = u + iv$,0 < v < 1, $v > (\operatorname{ctg}\alpha)u$, $u > 0\}$,其中 α 为角域 F 所成的角度.根据双曲测度的单调性,有

$$|f(E)|_{\text{hyp}}$$
 $|F|_{\text{hyp}} = \int_{0}^{1} \frac{(\operatorname{tg}\alpha)^{v}}{0} (\frac{1}{2v})^{2} du dv = \int_{0}^{1} \operatorname{tg}\alpha \frac{1}{4v} dv = \frac{1}{4} \operatorname{tg}\alpha \ln v \Big|_{0}^{1} = 0$

由定义,知 ƒ 是爆破的. 在单位圆的情形,我们有下列的推论 2.

推论 2 如果一个集合 E 满足长度 $l(E \cap \Delta) = 0$, 其中 E 为 E 的全部聚点, Δ 为单位圆周,则这个集合 E 的双曲面积必定是无限的.

证明 由假设, 可把 E 共形映到 H 上记为 E . 这时, 由于 E 也包含一个端点在边界 ∂H 上的角域的一部分,根据定理 1 及双曲测度的定义,推论得到证明。

下面的例子,说明定理 1 的结论具有相当的精确性.即存在这样的集合 $E \subset H$,当它的边界曲线在 H 的边界上具有交角为零,这时它是非爆破的.

例 4 设集合 $E=\{w\,|\,w=u+\,\mathrm{i} v,\,0<\,v<\,1,\,\,v=\,u^{1/m},\,m>\,1\},\,$ 则 E 对任何 $K>\,1$ 都是非爆破的. 证明时, 记 $E_n=\{w\,|\,w=E,\,2^{-n}=v<\,2^{-(n-1)}\},\,$ 则 $_{\perp}E_n=E,\,$ 而且

$$\left| E_{n} \right|_{\text{hyp}} = \sum_{2^{-n}=0}^{2^{-(n-1)}} {v^{m} \choose 2v}^{2} du dv = \frac{1}{4} \sum_{2^{-n}=0}^{2^{-(n-1)}} {v^{m-2}} dv = \frac{1}{4(m-1)} (2^{m-1} - 1) (\frac{1}{2^{m-1}})^{n}.$$

假设集合 E_n 是由分式线性变换 z = T(w) = (w - i)/(w + i) 映成 Δ 上的集合 E_n ,再由 $\frac{2^{-(n-1)}}{2^{-n}} \frac{1}{2v} | dw | = \frac{1}{2} \ln 2$ 和 $\frac{1}{0} \frac{1}{2v} | dw | \frac{1}{2v} v^m - \frac{1}{2}$. 由此可知, E_n 位于具有一致有界半径的双曲圆盘内, 而且具有阶数为 $(2^{m-1})^{-n}$ 的双曲面积. 由定理 C, 知它们在 K -拟共形映照下的像具有不大于 $(2^{m-1})^{-n/K}$ 的面积阶数. 因此. 它们的和是有限的, 且对任何 K > 1, E 都是非爆破的.

从例 1 和例 2 知道,集合 $E \subset \Delta$ 在一般的拟共形映照 f 映照下的像的双曲面积的大小,我们很难判断其改变的程度 . Porter 和 Reséndis 在文 6]考虑特殊的拟共形映照类,得到了定理 D 和定理 E. 我们证明下列的定理 2.

定理 2 假设 f Q_K^* 是径向的, 并设 0 < a < 1, $\{r_n\}$ 是一个满足 $r_1 = a$ 和当 n 时, r_n 1 的单调增加系列. 因此, 对任意的 $E \subset \Delta - \Delta_n$, 定义 $E_n = \{z \mid z \in E, r_n \mid z \mid < r_{n+1}\}$, 则成立

$$|f(E)|_{\text{hyp}} = \sum_{n=1}^{\infty} \frac{K}{r^{2(1-1/K)}} \left(\frac{1-r_n^2}{1-r^{2/K}}\right)^2 |E_n|_{\text{hyp}}.$$
 (10)

特别地,有

$$|f(E)|_{\text{hyp}} = \frac{K}{a^{2(1-1/K)}} (\frac{1-a^2}{1-a^{2/K}})^2 |E|_{\text{hyp}}.$$
 (11)

证明 ¹ 被据代(5) Ching (为) Regretation of Publishing House. All rights reserved. http://w

$$|f(E)|_{\text{hyp}} = \iint_{\mathbb{R}} \frac{J_{f}(z)}{(1-|z|^{2})^{2}} |dz|^{2} = \iint_{\mathbb{R}} \frac{J_{f}(z)}{(1-|z|^{2})^{2}} \frac{(1-|z|^{2})^{2}}{(1-|f(z)|^{2})^{2}} |dz|^{2} = \iint_{\mathbb{R}} \frac{1}{(1-|z|^{2})^{2}} \frac{\rho \rho_{r}}{r} \frac{(1-r^{2})^{2}}{(1-\rho^{2})^{2}} |dz|^{2}.$$
(12)

现在, 我们来估计 $\frac{\rho\rho_r}{r}\frac{(1-r^2)^2}{(1-\rho^2)^2}$ 的变化情况. 由式(5)有

$$\frac{\rho \rho_r}{r} \frac{(1-r^2)^2}{(1-\rho^2)^2} = \frac{r \rho_r}{\rho} \frac{\rho^2}{r^2} \frac{(1-r^2)^2}{(1-\rho^2)^2} K \frac{\rho^2}{r^2} \frac{(1-r^2)^2}{(1-\rho^2)^2}.$$

由于 ρ^{-1} – ρ 显然关于 ρ 是单调减少的, 所以有

$$\frac{\rho^2}{r^2} \frac{(1-r^2)^2}{(1-\rho^2)^2} = \frac{(r^{-1}-r)^2}{(\rho^{-1}-\rho)^2} = \frac{(r^{-1}-r)^2}{(r^{-(1/K)}-r^{1/K})^2}.$$
 (13)

$$\frac{\left(r^{-1}-r\right)^{2}}{\left(r^{-(1/K)}-r^{1/K}\right)^{2}}=\frac{\left(x^{-K}-x^{K}\right)^{2}}{\left(x^{-1}-x\right)^{2}},\quad\left(a^{K-1}< x< 1\right).$$

置 $f(x) = \frac{(x^{-K} - x^{K})^{2}}{(x^{-1} - x)^{2}}$,则有

$$f(x) = 2\frac{x^{-K} - x^{K}}{x^{-1} - x} \frac{(-Kx^{-K-1} - Kx^{K-1})(x^{-1} - x) - (-x^{-2} - 1)(x^{-K} - x^{K})}{(x^{-1} - x)^{2}} = 2\frac{x^{-K} - x^{K}}{(x^{-1} - x)^{3}} [(K - 1)x^{K}(1 - x^{-2K-2}) + (K + 1)x^{K}(x^{-2K} - x^{-2})] = 2x^{K} \frac{x^{-K} - x^{K}}{(x^{-1} - x)^{3}} [(K - 1)(1 - x^{-2K-2}) + (K + 1)(x^{-2K} - x^{-2})].$$

记 $Q(x) = (K-1)(1-x^{-2K-2}) + (K+1)(x^{-2K}-x^{-2}), (a^{K^{-1}} < x < 1), 则有 <math>Q(x) = (K-1)(2K+2)x^{-2K-3} - 2K(K+1)x^{-2K-1} + 2(K+1)x^{-3} = 2(K+1)x^{-2K-3}(K-1-Kx^2+x^{2K}).$ 再设 $P(x) = K-1-Kx^2+x^{2K}, (a^{K^{-1}} < x < 1), 则有 <math>P(x) = -2Kx+2Kx^{2K-1} = 2Kx(x^{2K-2}-1) < 0, 且 P(1) = 0.$ 从而, 当 $a^{K^{-1}} < x < 1$ 时, P(x) > 0, Q(x) > 0 和 Q(1) = 0. 所以, 当 $a^{K^{-1}} < x < 1$

< 1 时, 有 Q(x) < 0. 这样, 我们得到 $(r^{-1}-r)^2/(r^{-(1/K)}-r^{1/K})^2$ 是 r-(a,1) 上的单调减少函数. 对于 $E_n \subset E \subset \Delta - \Delta_\ell (n=1,2,...)$, 由式(12) 和式(13) 有

$$\sum_{n=1} \iint_{E_n} \frac{|f(z)|}{(1-|z|^2)^2} |dz|^2 = \sum_{n=1} \iint_{E_n} \frac{|f(z)|}{(1-|z|^2)^2} \frac{(1-|z|^2)^2}{(1-|f(z)|^2)^2} |dz|^2$$

$$K \sum_{n=1} r_n^{-2(1-1/K)} \frac{(1-r_n^2)^2}{(1-r_n^{2/K})^2} \iint_{E_n} \frac{1}{(1-|z|^2)^2} |dz|^2 = K \sum_{n=1} r_n^{-2(1-1/K)} \frac{(1-r_n^2)^2}{(1-r_n^{2/K})^2} |E_n|_{\text{hyp.}}$$

这样, 我们就证明了式(10). 从证明可看出

$$|f(E)|_{\text{hyp}} K a^{-2(1-1/K)} \frac{(1-a^2)^2}{(1-a^{2/K})^2} \sum_{n=1}^{\infty} \iint_{E_n} \frac{dz|^2}{(1-|z|^2)^2} = K a^{-2(1-1/K)} \frac{(1-a^2)^2}{(1-a^{2/K})^2} |E|_{\text{hyp}}.$$

定理2证毕.

应用定理 2、定理 C 及推论 1, 我们容易得到:

© 定理4320设分的版 A是径向的,集合上 Ceatry ic Publishing House. All rights reserved. http://w

$$|f(E)|_{\text{hyp}} = \inf_{0 \le a \le 1} \{ \frac{K\pi^{1-1/K}}{[1-\Phi_{\mathbf{k}}(a)^{2}]^{2}} |E|_{\text{hyp}}^{1/K} + \frac{K}{a^{2(1-1/K)}} (\frac{1-a^{2}}{1-a^{2/K}})^{2} |E|_{\text{hyp}} \}.$$
 证明 任取一个常数 $0 \le a \le 1$,将 E 分成 E_{1} 和 E_{2} ,其中 $E_{1} = \{z = z \mid < a, z = E\}$, $E_{2} = \{z \mid a \le |z| < 1, z = E\}$. 因此由推论 1 ,有 $|f(E_{1})|_{\text{hyp}} = \frac{K\pi^{1-1/K}}{(1-\Phi_{\mathbf{k}}(a)^{2})^{2}} |E_{1}|_{\text{hyp}}^{1/K}$;由定理 2 ,有 $|f(E_{2})|_{\text{hyp}}$ $\frac{K}{a^{2(1-1/K)}} \frac{(1-a^{2})^{2}}{(1-a^{2/K})^{2}} |E_{2}|_{\text{hyp}}$ 所以
$$|f(E_{1})|_{\text{hyp}} = \inf_{0 \le a \le 1} \{ \frac{K\pi^{1-1/K}}{[1-\Phi_{\mathbf{k}}(a)^{2}]^{2}} |E_{1}|_{\text{hyp}}^{1/K} + \frac{K}{a^{2(1-1/K)}} (\frac{1-a^{2}}{1-a^{2/K}})^{2} |E_{2}|_{\text{hyp}} \}$$
 $\inf_{0 \le a \le 1} \{ \frac{K\pi^{1-1/K}}{[1-\Phi_{\mathbf{k}}(a)^{2}]^{2}} |E_{1}|_{\text{hyp}}^{1/K} + \frac{K}{a^{2(1-1/K)}} (\frac{1-a^{2}}{1-a^{2/K}})^{2} |E_{2}|_{\text{hyp}} \}.$

定理3证毕.

参 考 文 献

- 1 Mori A. On quasi-conformality and pseudo-analyticity [J]. Trans. Amer. Math. Soc., 1957, 84: 57~77
- 2 Gehring F W, Reich E. Area distortion under quasiconformal mappings[J]. Ann. Acad. Sci. Fem. Ser. AI Math., 1966, 388: 1~14
- Bojarski B. Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients[J]. Math. Sb., 1957, 85: 451~503
- 4 Astala K. Area distortion of quasiconformal mappings[J]. Ann. Acad. Sci. Fenn. Ser. AI Math., 1966. 388: 1~14
- 5 Eremenko A. Hamilton D. H. On the area distortion by quasiconformal mappings[J]. Proc. Amer. Math. Soc., 1995, 123: 2.793 ~ 2.797
- 6 Porter R M. Reséndis L F. Quasiconformally explodable sets[J]. Complex Variables, 1998, 36: 379~392

Explodable Set of Quasiconformal Mapping

Chen Xingdi Huang Xinzhong

(College of Econ. Manag., Huaqiao Univ., 362011, Quanzhou)

Abstract In relation to explodable set of quasiconformal mapping, the author studies its properties; and finds a sufficient condition for judging hyperbolic area of a set on a plane to be infinite; and estimates hyperbolic area of radial *K*-quasiconformal mapping; and improves corresponding results obtained recently by Porter and Reséndis.

Keywords quasiconformal mapping, hyperbolic geometry, explodable set, radial mapping, distortion theorem