Vel. 11 Ne.

1990年4月.

Apr. 1980

用沸点计间接测定甲醇-水系汽液平衡

庄惠珍

(化工与生化工程系)

摘 要

本文用改进沸点计在压力为1.013×10⁵ P。下测定甲醇-水系不同浓度下的沸点,用Tao经验公式计算在平衡条件下汽相组成,並与文献实验值^[1] 进行比较,最后用Wilson等方程关联,得到满意的效果。

关键词 平衡,甲醇,沸点计

一、前 言

要得到纯净的化工产品,必须进行分离。有机产品的分离手段,一般依靠精馏,设计精馏塔要有汽液平衡数据作为依据,以往测定汽液平衡数据一般都在各种各样的平衡 釜 中进行,测定其平衡温度及相应的液相和汽相组成。但在汽液分离过程中由于设备结构、热损失等原因,可能造成汽相部分冷凝,致使所得样品不能代表真正平衡时的组成,同时分析样品时可能受方法的局限和步骤繁杂而引起误差。因此,探索在全浓度范围内用沸点计测定在一定浓度下的平衡温度,并用适当的公式计算出相应的汽相组成是人们感兴趣的课题。

本工作采用自行设计和制造的沸点计对甲醇一水二元体系进行测定,並用 Tao 公式计算 平衡下汽相的组成。

二、实 验

用0.00001g的全自动电光分析天平准确称量表 1 的试剂配制各种浓度的试样,倒入图 1 的改进沸点计中加热平衡。在整个实验阶段,压力由恒压装置维持 在 $1.013 \times 10^5 \pm 30 p_a$ 范围,温度用经校正的0.1 $\mathbb C$ 的二等标准玻璃温度计 测量並用保温管保持其全浸条件。整个系统压力、温度保持稳定0.5h。

1. 仪器

自制沸点计是本实验的主要设备,它是根据罗斯釜加以改造的,保持汽液双循环。加热

蛇管表面有鼓泡点形成气体中心防止爆沸,提升管使汽液充分接触以达到两相真正平衡。温

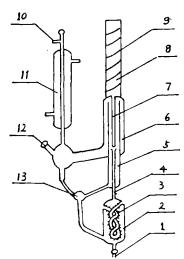


图 1 改进沸点计 1.排污口: 2.沸腾室; 3.蛇管加热器; 4.汽液提升管; 5.汽液分离室; 6.汽体夹套; 7.温度计套管; 8.温度计保温管; 9.电阻丝; 10.稳压口; 11.冷凝器; 12.加料口: 13.混合室

度计套管的下端紧接汽液提升管出口,使测温计持续不断地接触到平衡的汽液两相,保证测得平衡温度的准确。实验表明该沸点计具有易达平衡、测定数据稳定可靠、操作方便、不留残液、容易清洗等优点。

2. 试剂

甲醇:上海化学试剂厂生产的分析 纯 试 剂, 含 量 在 99.5%以上;水:重蒸蒸馏水。

三、计 算 依 据

根据小岛和夫介绍的Tao*经验公式来计算各浓度下的活度系数:

$$(r_{1}/r_{2})^{\binom{n-1}{2}} = C_{n}A_{n}(r_{1}/r_{2})_{ne} + C_{n}B_{n}, \qquad (1)$$

$$(1/r_{2})_{ne} = A_{n}(r_{1}/r_{2})_{ne} + B_{n}, \qquad (2)$$

$$(r_{1})_{ne} = (r_{1}/r_{2})_{ne}/(1/r_{2})_{ne}, \qquad (3)$$

$$A_{n} = P_{1}^{s}ne/P, \qquad (4)$$

$$B_{n} = (1 - ne)P_{2}^{s}/P, \qquad (5)$$

$$C_{n} = C_{n-1}(r_{1}/r_{2})^{s}_{(n-1)}, \qquad (6)$$

$$C_{0} = (r_{1}^{\infty})^{e/2}, \qquad (7)$$

表1 甲醇和水的物性数据

d th	纯度	沸	点(°C)	折光率	n a 2 5	比重	d. 25
名称	(%)	实验值	文献值	实验值	文献值	实验值	文献值
甲醇	99.5	64.55	64.51	1.3263	1.3306	0.7890	0.7917
水		99.97	100	1.3320	1.3325	0.9970	0.9970

式中,n 为全浓度等距离的分段数; ϵ 为每一分段的等浓度差;P为系统压力,P;,P;为组分1,2的饱和蒸汽压;r1°为组分1的无限稀释活度系数。

极稀浓度下的活度系数用下式计算

$$r_1 = \frac{P}{P_1^*} \left[1 - \frac{\Delta H^{\mathsf{v}} \quad \Delta T}{RT^2 \quad X_1} \right]^{[2]} . \tag{8}$$

极移浓度下汽体组成可用下式计算

$$Y_1 = X_1 - \frac{\Delta H^{\nu}}{RT^2} \Delta T^{[2]} . {9}$$

^{*}式(1)至式(7)均引自小岛和夫,フロセス设计ノヌタノ相平衡トソノ化学工学イへノ应用,南京化工学院出版,(1984),39.

又Clapeyron-Clausius方程为

$$d\ln P^s/dT = \Delta H^{\nu}/RT^2. \tag{10}$$

饱和蒸汽压按Aitoin方程式计算

$$\log P^s = A - \frac{B}{T + C},\tag{11}$$

微分Aitoin方程得

$$\frac{\sigma \ln p^s}{\sigma T} = 2.303 \frac{B}{[T+C]^2}.$$

而

$$\Delta T = T - T_{n}$$

其中,T为平衡温度,T。为纯溶剂沸点。

甲醇和水的Aitoin常数列于表 2.

表 2	A, B, C	常数表[1]
组分	甲醇	水
\overline{A}	8.08097	8.07131
B	1582.271	1730.63
C	239.726	233.426

四、实 验 结 果

1. 极稀浓度下的活度系数

用自制沸点计测得甲醇在水中极稀浓度下的平衡温度,並用方程(8)计算无限稀释 活度系数。

甲醇浓度 <i>X</i> _甲	沸点 t(°C)	活度系数 ^r 甲	汽相组成 y _甲	文献值 ^[2] ^y 文			
- · · · · · · · · · · · · · · · · · · ·				······································			
0.002	99.60	2.2177	0.01524	0.015496			
0.003	99.37	2.3944	0.02450	0.023375			
0.004	99,22	2.2754	0.03090	0.031126			
0.005	99.61	2.2976	0.03876	0.038316			
0.006	98.86	2,2797	0.04590	0.046096			
0.007	98,65	2.3354	0.05451	0.053750			
r <mark>∞</mark> 平均值		2.300		· ·			
r 8 文献值		2.312		ř.,			

表3甲醇在水中极稀浓度下的活度系数

由表 3 数据可见用自行设计制作的沸点计测定极稀浓度下的沸点,然后根据式(8)、(9) 计算其极稀浓度下的活度系数和汽相组成,其数据与钱万成^[2] 所做的比较相差很小,说明这 台沸点计测定的数据是可靠的。

2. 全浓度实验数据和计算相应汽相组成

在沸点计中测得每个精确配制液体组成的平衡温度,並用Tao公式解得活度系数,同时运用汽液平衡基本方程求出相应的汽相组成。

配制液体组成 实测平衡设 X _甲		汽相组成计算值 <i>Y</i> _甲	汽和文献实测值 ^[1]	$\triangle Y = Y_{\uparrow \uparrow} - Y_{\circlearrowleft} \triangle Y^2$				
0.02	96.72	0.1279	0.1340	-0.0061	3.72×10 ⁻⁵			
0.04	93.79	0.2329	0.2300	0.0029	8.41×10^{-6}			
0.06	91.59	0.3060	0.3040	0.0020	4×10^{-6}			
0.08	89.44	0.3626	0.3650	-0.0024	5.76×10^{-8}			
0.10	87.60	0.4173	0.4180	-0,0007	4.9×10^{-7}			
0.15	84.25	0.5198	0.5170	0.0028	7.84×10^{-8}			
0.20	81.65	0.5876	0.5790	0.0086	7.4×10^{-5}			
0.30	78.05	0.6616	0.6650	-0.0034	1.16 × 10 ⁻⁵			
0.40	75,45	0.7248	0.7290	-0.0042	1.76×10^{-5}			
0.50	73.35	0.7764	0.7790	-0.0026	6.76×10^{-8}			
0.60	71.45	0.8243	0.8250	-0.0007	4.9×10^{-7}			
0.70	69,65	0.8707	0.8700	0.0007	4.9×10^{-7}			
0.80	67.95	0.9154	0.9150	0.0004	1.6×10 ⁻⁷			
0.90	66.25	0.9596	0.9580	0.0016	2.56 × 10 ⁻⁶			
△Y 算术平均 均方根		,	.•	0,0028	0.00356			

表 4 甲醇-水系实测数据和汽相计算值

由表 4 可见用经验公式(1)等计算的汽相组成与文献中实测的汽相组成相比较,全 浓 度 的每个数据相差都很小,其绝对值的算术平均误差 Δ^P 为0.0028,均方根误差 $\delta = \sqrt{\Sigma \triangle^{V^2/n}}$ 为0.00356。这说明用沸点计测定甲醇-水系的汽液平衡,以及所采用的经验公式计算该体系的汽相组成是可行的。

3. 用Wilson等方程进行关联

根据测得的无限稀释活度系数,用Wilon 方程、Van Laar 方程和 Margules 方程进行关 联,並与实测的平衡温度和用经验公式计算的汽相组成进行比较,其结果列在表 5。从表上比较数据可进一步说明甲醇-水系以液体浓度和实测平衡温度为依据,用经验公式进行 计 算 汽相组成是可靠的。

五、结 论

- (1)在罗斯平衡釜基础上进行改进设计的沸点计,操作稳定方便,易达平衡,测定数据可靠。
- (2)甲醇-水系在全浓度范围内可以用沸点计测定不同浓度下的平衡温度,並用 Tao 经验公式计算不同浓度下的活度系数,然后根据汽液平衡基本方程求出相应的汽相组 成 是 可 行 的。
- (3)用Tao公式计算各浓度下相应的汽相组成,只要一端的无限稀释活度系数,这是它的优点。用Wilson等方程关联,必须要有两端的无限稀释活度系数,然而极稀浓度下的活度系数往往只在浓度微小变化就引起温度较大变化的一端容易测准,对温度受浓度变化影响小的一端很难测准。

参 考 文 献

- (1) Gmehling, J., Vapor-Liquid Equilibrium Data Collection, published by Dechema, 1, 1 (1977), 47.
- [2] 钱万成,用改进的沸点计法测定无限稀释活度系数进行汽液平衡的研究,石油化工,4(1981),241。
- (3) Yoshlkawa, Y., J. Chem. eng. Data, 25(1880). 344.

Indirect Determination of the Vapor-Liquid Equilibrium of Methanol-Water System by Ebulliometry

Zhuang Huizhen

Abstract

By means of a modified ebulliometer measures the poiling point of a methanol-water system in variable concentration at atmospheric pressure. Tao's empirical formula is used to calculate the vapor under equilibrium condition. The results are being compared with that given in the literature and that solved by Milson equation. They are proved to be satisfactory.

Key words equilibrium, methanol, ebulliometer

) -		,		''	<u>' v</u>				子:		子							9902
盘	** \(\sqrt{\sq}\sqrt{\sq}}}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	-0.0107	-0.0054	-0.0075	-0.0099	-0,0029	0.0111	0.0162	0.0012	-0.0014	-0.0047	-0.0057	-0.0046	-0.0030	0	0,0060	0.0074	
	$\triangle T^*$	0.31	0.22	0.32	60.0	-0,12	-0.28	-0.26	-0.46	-0.30	- 0,08	0,08	0.17	0.22	0.17	0.22	0.24	
Wilson J) <i>V</i> *	0.1386	0.2383	0,3135	0,3725	0.4202	0.5087	0.5714	0,6604	0,7262	0.7811	0.8300	0.8753	0.9184	0.9596			ļ ļ
	$T_{ eq}(^{\circ} ext{C})$	96,41	93,57	91,27	89,35	87.72	84.53	82,11	78,51	75.75	73,43	71.37	69,48	67,73	66.08			
椲	** 4\	-0.0102	-0,0076	-0.0132	-0.0189	-0.0149	-0.0055	-0.0020	-0.0142	-0.0109	-0.0085	-0.0053	-0,0022	-0.0004	0.0011	0,0082	6600*0	
	$\triangle T^*$	0,29	0.27	0.49	0.33	62.0	0.40	0.57	0,40	0.42	0.43	0.40	0,33	0,29	0,19	0.37	0.38	
Margules 📆	$^{Y}_{\divideontimes}$	0,1381	0.2405	0.3192	0.3815	0.4322	0.5253	0.5896	0.6758	0.7357	0.7849	0.8296	0.8729	G _ 758	0.9585			
程 Margules 方 程	$T_{\divideontimes}({}^{\circ}\mathbb{C})$	96.43	93,52	91,10	90.68	87.31	83,85	81,28	77.64	75.03	72,92	71,05	69,32	67.66	90*99			
ᇓ	**	-0,0093	-0.0050	-0.0089	-0,0132	- 0.0079	. 0.0029	0.0064	-0.0081	-0.0084	-0.0091	-0.0078	-0.0052	-0.0026	0.0003	0,0068	0,0075	洪
Ĭ	$\triangle T^*$	0,26	0.13	0.33	0.16	0.01	-0.01	0.11	-0.03	0.08	0.21	0.28	0,29	0.28	0,19	0.17	0.2	:V - Y :
n Laar	$_{\overset{Y}{\times}}$	0.1372	0.2379	0,3149	0.3758	0.4252	0,5169	0.5812	0.6697	0.7332	0.7855	0,8321	0.8759	0,9180	0.9593			$\wedge V^{**} = V$
Van	$T_{ extcolor{lem}{ ilde{ imes}}}(extcolor{c})$	96,46	93.61	91,26	89.28	87.19	84.26	81.74	78.08	75.37	73.14	71.17	98.69	67.67	90*99			(0,)
京	Y_{\mp}	0.1279	0,2329	0,3060	0,3626	0,4173	0,5193	0.5876	0,6616	0.7248	0.7764	0,8243	0.8-07	0,9154	0.9596	$ \triangle^Y $	ò	_ T _
憂	$T(_{\circ}C)$	96.72	93,79	91,59	89,44	87.60	84,25	81,85	78.05	75.45	73,35	71.45	69,65	67,95	66,25	算术平均误差 △Ⅴ	均方根误差	$\triangle T^* = T$
巛	χ_{\mp}	0.02	0.04	90.0	0.08	0.10	0.15	0,20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	算术	均方	