Vol.11 No.2

Apr. 1990

1990年4月

高铁离子涂丝电极的研究与应用

庄秀润 岑传铨

(应用化学系)

摘 要

本文报道了以苄基十四烷二甲基四氯高铁酸铵为电活性物质的PVC 涂丝电极测定Fe($\mathbbm{1}$)的方法。该电极对FeC1、高子的Nernst响应范围为10- 4 —10- 4 M,极差为56mV(25 $^{\circ}$ C). 检测下限为1.6×10- 4 M,内阻3M Ω 左右。电极的再现性、选择性、响应时间均较好。该 电极 用于铁矿石中铁含量的测定结果满意。

关键词 涂丝电极,选择性电极,铁矿石,铁

一、前言

James等人^[1] 报道过用各种季胺盐、聚氯乙烯作为膜材料的一系列对阴离子有响应的 涂 丝离子选择性电极。Scibona等人^[2] 研究了对ZnCl₄²-与PbCl₄²-有响应的高选择性液膜电极,并提出这种电极有可能用于高价离子的分析工作。近两年来涂丝、涂碳离子选择性电极在国内已有人研究並与场效应晶体管联合应用^[3-5]。但本文制作的苄基十四烷基二甲基四 氯 高铁 酸铵涂丝离子选择性电极及其用于测定铁矿石中含铁量则未见报道。

二、实验部分

1、仪器和试剂

(1)PZ38型直流数字电压表(上海电表厂);(2)苄基十四烷基二 甲 基 氮 化 铵 C·P•;(3)邻苯二甲酸二丁酯(DBP)A·R•;(4)邻苯二甲酸二正辛酯(DOP)A·R•;(5)四氢呋喃(THF)A·R•;(6)聚氯乙烯(PVC), XJ-5紧密型(福州二化)。 其它试剂均为分析纯。

2. 电极的制作

(1)电极基体预处理:取长约20Cm的同轴高频电缆线(铜丝直径约0.5mm),一端 剥去绝缘层並焊上玻璃电极用的插头,另一端使铜丝露出约1.5—2Cm,用金相砂纸将露出

的铜丝及其端部磨光, 依次用蒸馏水、丙酮、氯仿清洗並晾干待用。

- (2)电话性物质的制备:取适量苄基十四烷基二甲基氯化铵溶于氯仿並置于分液漏斗中,用两倍体积的2M FeCl₄ (FeCl₃溶于6M HCl中)溶液进行振荡,使完全转型,分出有机相,置水浴上赶尽氯仿,然后于50℃下烘干得苄基十四烷基二甲基氯化高铁铵电话性物质。
 - (3)电极敏感膜的涂覆: 称取一定量的PVC粉末溶于THF中使之成 为 5% (W/V)的

无色透明粘稠液。然后加入一定量的电活性物质、增塑剂DBP或DOP混合均匀则形成涂液。

将已处理过的电极基体一端浸入涂液片刻,取出晾干,使溶剂挥发,这样反复浸涂直至铜丝末端形成一个直径 2 mm 左右的梨形小球为止(大约需浸涂 50 次)。晾干约1一2 d后的电极,再用环氧树酯 将其小球以上的铜丝暴露部分均匀涂覆使其形成绝缘层並晾干固(图 1)。制作完毕的电极不用时可干放保存,每天使用前须在0.1M FeCl, 一溶液中浸泡活化 1 h。

图 1 制成的涂丝离子选择性电极(C、W、E)

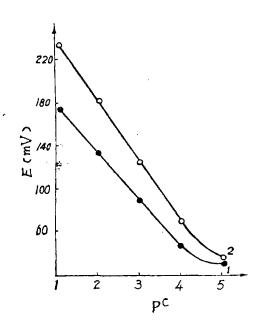
3. 测试方法

以1M HCl-5M NaCl溶液为介质用系

列稀释法配制 10^{-1} — 10^{-6} M的 $FeCl_4$ -标准系列溶液。用217型双液接甘汞电极作参比电极(外盐桥溶液用饱和 Na_2SO_4),与涂丝 $FeCl_4$ -电极同时插入试液组成电池,用PZ38直流数字电压表读取平衡电位值。

三、结果与讨论

1. 敏感膜涂液组成的试验


在 5 ml 5% (W/V) 的PVC四氧呋喃溶液中,加入15mg电活性物质的条件下分别用DBP和DOP (各加0.6ml)进行试验,对Fe³*的响应曲线如图 2 所示。结果表明,使用 DBP 作为增塑剂时其响应曲线级差大,且成膜机械性能较好。DBP 用量在 0.2—0.8ml 范围内电极 的Nernst响应无明显差异,用量大于0.8ml时膜的机械强度差,小于0.2ml时级差降低,稳定性也差,本试验采用0.6ml DBP作为增塑剂。

如改变电活性物质用量(5、10、15、20mg),其它条件同上。结果表明,其 Nernst 响应曲线范围和级差相接近,仅是用量小时检测上限下降,用量大时则检测下限升高。因此,本试验的敏感膜涂液组成,采用在5 ml 5%(W/V)的PVC四氢呋喃溶液中加入0.6ml DBP及15mg电活性物质。

2. 电极性能的测试

(1)电位的响应,用上述的敏感膜涂液组成所制作的电极,根据试验方法 在 10^{-1} — 10^{-6} M的FeCl₄~浓度范围内测量其电位,绘制的E-pC曲线如图 3 所示。在 10^{-1} — 10^{-4} M的范围

内电位与浓度成线性关系。级差为56mV(25℃)。

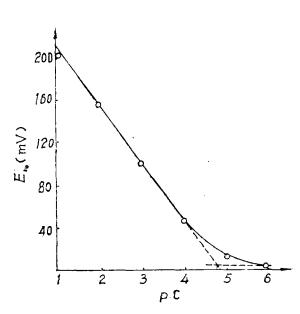


图2 不同項整剂的涂至电极的响应面级 (电话性物质15mg)1—DOP; 2—DBP

图 3 电极的Nernst响应曲线及其检测下限

- (2)检测下限:根据IUPAC推荐的方法、测出其检测下限为 $1.6 \times 10^{-5} M$ 。
- (3)响应时间: 在搅拌条件下, FeCl, 在10⁻¹—10⁻¹M范围内响应时间小于30s.
- (4)重现性与稳定性:用同一根电报在10⁻¹—10⁻⁵M FeCl₄⁻范围内,每天测一次,连续测 6 天,其结果如表 1 所示, 初应电位的重见性较好。

表 1 电散的重现性

		FeCl, 标准系列M					
		1 G - 1	10-5	10-3	10-4	10-5	
	我 东	电极电位mV(Vs. SCE)					
	第1天	214	160	102	48	14	
	每2天	214	161	102	48	14	
	選3 美	213	158	101	47	13	
	第4 天	216	161	105	47	16	
	第5天	215	161	103	50	15	
•	第6天	214	161	102	49	14	
	平 均	214	160	103	48	14	

电极在10-3M FeCl4-溶液中连续测定 2 h其电极电位变化< 1 mV (25℃).

· 65)选择性系数:

采用分别溶液法[6] (FeCl, 高子I和干扰离子I的浓度均为10-3M),测定了一些常见离

子的电极选择性系数(K_{i}^{o}),结果如表 2 所示。

÷ 2	由超升省	面宽字的	选择性系数
ズム	电级对话	处内厂厂间	三型 包括十二次 数

干扰离子(/)	选择性系数(K_{I}^{pot})	干扰离子(1)	选择性系数($K_{I.J}^{pot}$)
CO ₃ 2-	5,17×13 ⁻³	Al ^{3 +}	1.21 × 10 ⁻ 2
SO,2~	5.40×10^{-4}	Ca2 +	6.07×10^{-3}
SCN-	1.20×10^{-4}	Mg²+	5.29×10^{-3}
SO32	6.75×10^{-3}	Mn ^{2 +}	5.29×10^{-3}
NO ₂ -	1.15×10^{-2}	Cu ²⁺	2.33×10^{-2}
F-	7.71×10^{-3}	p b ^{2 +}	6.41×10^{-3}
Br-	6.11×10^{-3}	Ni2 +	4.85×10^{-3}
Λc-	2.12×10^{-2}		•

(6)电极内阻:

用並联电阻法⁶¹ 测得电极内显为3MΩ左右。电极膜厚度不同,内阻有变动。膜太厚,内阻力,响应时间长,级差小,电极膜太薄,电位不稳定且寿命短。

(7) 电极寿命:

所制作的电极,使用一个多月后其性能无阴显变化。

3. 分析应用实验

准於称取0.2000g铁矿样,用少量蒸馏水润湿后,加入2ml浓H₂SO₄、8ml浓HNO₃与2ml浓HCl, 然后置电热板上低温加热,使矿样完全溶解並蒸发至于,取下冷却,再补加5ml浓HNO₃使矿石中的铁完全生成高价铁。最后继续加热蒸发至白烟消失。残渣用1MHCl—5MNaCl溶液溶解,並定客至250ml,摇勾后于过滤于小烧杯中然后用所制作的电极进行测定。

按照分析步骤分别对1°和2°铁矿梯进行分析,其结果並与K2Cr2O7法甲进行比较,见表3。

			本写法分价结果	K。Cr。O,主分折结果	
矿材料	简得FeC1,- (M)	换算成矿祥山 (Fe %)	变动系数多	矿样中 (Fe%)	变动系数%
1 *	7.139×10 ⁻³ *	49.84	0.30	49 .92*	0.15
2 *	6.261×10^{-3}	43.71	0.35	43.60*	0.25

表3 铁矿锌的分析信果

参 考 文 献

- (1) James, H. Carmack, G. and Freiser, H., Anal. Chem., 44 (1972).856.
- (2) Scibona, G., Mentella, L. and Danesi, P.R., Anal. Chem., 42 (1970), 845.
- [3] 活景浩、刘宏, 涂碳PVC贖InBr, 离子选择电极, 分析化学, 5(1985), 370.
- [4] 奚治文、黄枢、张道悌、李晖,碳棒涂膜式离子选择电极的研究,分析化学,2(1986),102.
- 〔5〕黄德培、朱春生等,涂焦钾离子场效应敏感器件在临床医学中的应用,分析化学,10(1986),78%

^{*}为五次测得结果的平均值

- 〔6〕黄德培、沈子琛、吴国梁,离子选择性电极的原理及应用,新时代出版社,(1982),49,,65.
- 〔7〕岩石矿物分析编写小组,岩石矿物分析,地质出版社,(1974),223.

A Coated Wire Fe (III) Electrode and Its Application

Zhuang Xiurun Cen Chuanguan

Abstract

Tor use in the determination of Fe (III), this paper presents a coated wire electrode in which the electroactive membrane is composed of tetrachloroferrate salt of benzyl teteadecyl dimethyl ammonium schloride, combining with polyvinyl chloride.

A linear near-Nernst response to the electrode is obtained over a concentration range of 10^{-4} to 10^{-1} M FeCl₄, with a slope of 56 mV per concentration decade (25°C). It shows a detection limit of 1.6×10^{-5} M and a membrane resistance of about MQ. It also shows a fairly good repeatability, selective-ness and response time.

The electrode has been applied successfully to the determination of Fe (III) in iron ores.

Key worts Coated wire electrode, selective electrode, iron ores, iron.