朝10卷 第4期

1989年10月

华侨大学学报自然科学版 JOURNAL OF HUAQIAO UNIVERSITY (NATURAL SCIENCE)

Vol.10 No.4

Oct. 1989

溴酸钾法测定茶皂素

许国水

(应用化学系)

摘 要

《文研刊了四溴三年注测定录皂素的最优测定条件, 並测得香油中茶皂素合量7-20mg/ml 汇售的国办条 5 1/2-1(5%, 李星系数为 1.2-2.1 %。

关键词 真成方法, 皂藻, 雨收率, 变异层数

皂苷类化合物中的萘皂素,属三萜皂苷,它是茶籽的主要成分之一。茶皂素具有显著的生物活性及乳化、分散与湿润等优良性能。在医药上用于化痰、止痛、消炎,工农业上主要用作表面活性剂,其用途日益广阔。我国茶籽资源极丰富,近年年产茶籽约 12.5×10⁴ t^[1],茶籽榨油后的籽粕中约含茶皂素10-14%^[2]。可见,将茶籽粕开发为天然表面活性剂的来源有着广阔的前景。

徐礼樂曾综述了70年代之前有关皂苷类化合物的分析方法^[3],按其分类共有13类之多,但至今对茶皂苷如何测定,尚乏有简便准确的方法。为此,本文介绍用溴酸钾法测定茶皂素的研究结果。

一、仪器与试剂

酸式半微量滴定管(5ml).

茶皂素: (1)粗制品, 由福建省轻工业研究所提供; (2)精制品, 由本实 验 室 将茶皂素粗制品精制而成。 经二次重结 晶 后测得的熔点为 224±0.5℃。茶 皂 素含量为 97.4%,

溴酸钾等其它试剂均为AR级。

二、试验基本原理

1. 茶皂素的化学结构

茶皂素是一种 β- 香树素 (β- Amyrin)型的三萜五环皂苷^[4]。其糖苷配基的基本骨架是 齐墩果烷,糖类多为五碳、六碳糖、糖醛酸。在糖苷配基上结合着由有机酸构成的酯,由于

本文1988年3月30日收到。

茶皂素基本骨架外所结合的化合物不同而有多种糖苷配基,如从土耳其制黑茶的茶树所提取的茶皂素,就含有5种以香树素型为主体的糖苷配基^[2],因而茶皂苷的结构类型较多,下面是其中之一的化学结构。

从这一结构可知其五环三萜的糖苷配基上的Δ¹² 有一具环已烯性质的双键,另与其成酯的 当 归酸的α-β碳间也有一个双键,它具有直链烯烃的性质。

2. 溴对碳-碳双键的加成反应

H.O.House 认为^[5], 溴对没有空间阻碍的碳-碳双键的加成反 应时常是快速的, 故可以作为滴定反应来完成,将溴导入反应混合物,溴与烯的反应立即完成。从上述结构可见茶^[5] 皂苷的糖苷配基上的两个双键均不呈空间阻碍,因而即使茶皂苷整个分子的化学结构上存在有酸基、酯基、羟基等也不会对溴加到烯的双键上发生剧烈的竞争反应。

3. 溴酸钾滴定剂与甲基橙指示剂

Koppeschaar^[6] 首先采用溴酸盐作滴定剂,后来Feit和Kubierschky又作了详细研究指出 溴酸钾规定溶液具高度稳定的优点;Gyory采用甲基橙作滴定终点的指示剂,避免用碘量法 作返滴定。所以在有溴化钾与酸性条件下,采用甲基橙作终点指示剂,以溴酸钾滴定 茶 皂 素,其反应为。

$$B_r O_3^- + 5 B_2^- + 6 H^+ \longrightarrow 3 B_{r2} + 3 H_2 O$$
 (1)

反应式(2)说明每分子茶皂苷消耗2分子溴,即n值为4;反应式(3) 表明在酸性介质下,过量溴酸钾与指示剂甲基橙开始反应时,溶液呈现的橙红色随甲基橙量递减而逐渐变浅,当甲基橙完全与溴酸钾反应后,溶液橙红色则完全消失。因此,以溶液由橙红色变浅或消失时作为滴定终点。

由于反应式(3)的反应较反应式(2)为慢,又属不可逆的褪色反应,故滴定时应剧 烈振荡溶液或临近终点时再加入指示剂並略提高溶液的温度,以利滴定终点的判断。

(3)

三、确立最优测定条件的方法

(无色)

 $\longrightarrow \quad (CH_3)_2 - N - (CH_3)_2 - NBr_2 + HSo_3 - NBr_2$

用正交试验设计法判断分析试验结果,並以最优分析条件测定茶皂素不同含量下的回收率。根据上述反应原理分析溴酸钾法滴定时,应考察的反应条件是介质的温度、酸度、溴化物的浓度和加入滴定剂的速度等因素。每个因素采用三个水平,运用 L_0 (3⁴)正交表。以

纯茶皂苷的溴化率作为考察指标,其表头设计为表1.从试验结果直观分析计算为表2.

表	1	表头	设让	į-
-	-	ルヘノト	· .	

水平	因					
	反应温度 <i>A</i> , ° C	滴定剂加入速度 <i>B</i> , s/滴	溴化钾与溴酸钾浓度比 C,N _{KBI} /N _{KB103}	起始酸度 D, Hcl		
1	20-30	1	1.0	1.5		
2	30-40	4	2.0	2.5		
3	10-20	2	3.5	3.5		

表 2 直观分析计算

项 目		因素与列号			溴化率 (%)	
		A, 1	B, 2	С, з	D, 4	(/ 0 /
	1	1	1	1	1	99.37
试	2 .	I	2	2	2	77.63
	3	1	3	3	3	91.61
验	4	2	1	2	3	91.93
	` 5	2	2	3	1	68.32
号	6	2	3	1	2	80.13
	7	3	1	3	2	77.02
	8	3	2	1	3	83.84
	9	3	3	2	1	69.56
	K_1	268.61	268.32	263.34	237.25	Σ 739.41
	K_{2}	240.38	229.79	239.12	234.78	
	K_3	230.42	241.30	23€.95	267.38	
	k_1	89.54	89.44	8 7. 78	79.08	$\Sigma/9 = 82.16$
	k_2	80.13	7G.60	79.71	78.26	
	k_3	76.81	80.43	78.93	89.13	
$R = k_{m}$	c/kmin	12.71	12.84	8.8	10.87	

各因素与溴化率的关系为图1。

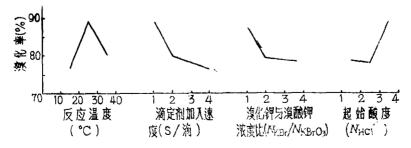


图 1 茶皂苷的溴化率与四个医素的关系

四、结果与讨论

1. 温度条件

反应温度<20°C或>30°C的溴化率都不如在20-30°C好,因而具要室温下即已能得到良好的溴化率。但前面所述反应式(3)甲基橙被溴素氧化在室温下进行**缓慢。在较高温度下反**应速度能提高。与Nissenson和Siedler^[7] 所提甲基橙作指示剂的滴定必须在加热溶液下进行程度。

2. 滴定剂加入速度

滴定剂加入速度以每秒加入 1 滴的溴化率最高,它比之每 2 s/或 4 s/加入 1 滴的溴 化率部好,图 1 中因素 B 不同水平所对应的平均溴化率之间差异最大 (R = 12.84),因此滴定 元加入速度是影响溴化率的最重要因素。这与 House [5] 所述一致。但过快的滴加速度对操作不易控制,且与滴定至终点时甲基橙的被氧化反丘条件相矛盾,因如果不是用加热方法加速反应式 (3) 的反应,就得降低滴定剂加入速度,每加 1 滴滴定剂就必需剧烈摇动,以免来不及反应的原案程发,所以滴定剂加入速度宜先快后增。尤其当甲基橙开始褪色时更应放慢。

3. 溴化钾与溴酸钾的当量浓度比

图 1 所示,因素C的 R 信最小(R=8.8),说明这因素是影响溴化率最次要的因素但为 要使 BrO^{-} 。接反应式(1)顺利地进行,不致发生下列反应

$$\beta_r O_3^- + 6H^+ + 6e \longrightarrow \beta_r^- + 3H20$$
 (4)

(4)招致 β_{ϵ} O_{ϵ} 消耗在还原性物质的反应,最好将溴化钾的当量浓度提高1倍。

4. 起始酸度

滴定反应的起始酸度也是重要因素,酸度按反应式(1)可知,溴的生成反应中有大量的包壳子参与反应,其电位总是取决于氢离子浓度。按其反应式来计算电位其误差不大,仍可认为随着氢高于浓度的提高,便有足够量的溴素提供溴的迅速对碳-碳双键的加成反应,因迅速化率也提高。

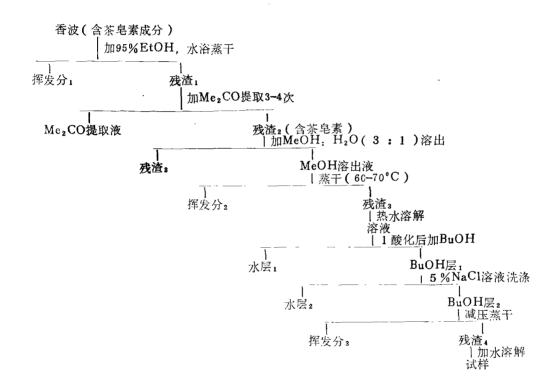
但不应忘记当酸度过于提高时,有可能使在低酸度下不易水解的茶皂苷发生水解,使原来不具还原性的茶皂苷转化而产生方还原性的醛糖,另方面过高速度的溴生成,也有使溴素来不在加成反应而逸出溶液的危险,所以可不必靠求最高酸度而先以 $A_{8}\beta_{1}C_{2}D_{3}$ 作为测试条件进行茶皂苷回收率的试验。

5. 粗茶皂囊中菜皂苷的回收率

回收率的测定结果如表 3.

表 3 测定短示皂素中景皂苷的回收率

样品 分数	担款皂繁中茶皂苷 含量(mg/ml)	加入地界皂苷量(mg/ml)	测得量(平均值) (mg/ml)	回收率(%)	变异系数(%)
6	20	1	1.05	105	2.1
8	7	5	5.1	102	1.4
5	12	3	3.07	102	1.2


由表 3 可见,将样品作适当预处理后,以 $A_3B_1C_2D_3$ 作为测试条件已能使测得茶皂素中 含量7-20mg/ml的回收率达到102-105%,基本满足生产上的质检要求。

6. 关于n值的确定

按上述反应式(2)与实际测试结果其茶皂苷的 n 值为4. 但由于糖苷配基外所连 接 化 合物不同将有可能出现不同的n值,如从中国茶叶所提取而获得茶叶皂素^[8] 除(2)-2-甲代丁烯酸与顺式-2-甲基-2-丁烯酸外还有茶基—2—丙烯酸,而制造土耳其黑茶的茶树产的茶籽柏中的茶皂素其糖苷配基就有5种之多,其n值都得通过对纯品测试结果来确定。

7. 干扰物的排除

由于含茶皂素的商品或粗提物都有可能干扰溴素的简单加成反应, 所以宜在测定之前对试样加以预处理,以含茶皂素的香波为例。

预处理后的试样经稀释至适宜的浓度达一定的体积,再按上述所得测试条件进行定量测定。

参 考 文 献

- [1] 王署跃,一种性能优良的天然表面活性剂一一茶皂素,日用化学工业,2(1987,32-4.
- .(2) Yazicioglu, T., Karaali, A.and Gokcen, T., Turkish teaseed Oil and tea Saponin. C.A.87, (1977), 20839.

- 〔3〕徐礼桑, 皂苷类化合物分析方法研究进展, 药学学报, 17(1982), 314/319
- (4) Roberts, G.R.. Products from tea seeds, 2 Extraction and properties of Saponins, Tea Quart, 43, 3 (1973), 91-94.
- (5) House, H.O., Modern Synthetic Reactions, The Benjamen/Cummings Pub Comp. 2th, (1973).
- (6) Kolthoff, 1. M. et. al., Volumerie Analysis Interscience Pub., Inc., New York, 3, (1957).
- (7) Nisstenson, H. and Siedler, P., Chem. Ztg., 27. (1903), 749.
- [8] Akito, H., Saponin Froin the Leaf of Thea Sinensis,], Component Sapogenins and Sugars of the Saponin, Nippon Nogel Kayaku Kaishi, 47, 4 (1973), 237-240.

The Determination of Tea Saponin by Potassium Bromate Method

Xu Guoshui

Abstract

The optimum Conditions for the determination of tea saponin by potassium bromate method are discussed in this paper. Under these optimum conditions, a tea saponin determination is carried out on shampoo in which the content of tea saponin being 7-20 mg/m1. The results reveal a recovery of 102-105% and a variation coefficient of 1.2-2.1%.

Key Words potassium bromate method, saponin, recovery, variation coefficient