1988年2月

Feb. 1988

锡-BPHA络合物极谱吸附波及其应用

雷淑贞 林逸兰

(应用化学系)

摘 要

在PH=5的1MNH、AC溶液中,锡-BPHA含合物在单扫描示波极谱仪上有一灵敏的极谱吸附波、其峰电位为-0.72V(VS.SCE),峰电流与锡浓度在1.7×10⁻⁶—3.4×10⁻⁸M范围内呈线性关系、其检测限为3.0×10⁻⁷M、应用于青铜中锡的测定,结果良好、对极谱波的性质进行了讨论。

锡的极谱分析现状文献^[1] 曾作了较详细的介绍,而铅的干扰常常较为严重。有关锡的催化极谱测定也已有一些报导^[2-4],但用 BPHA (N – 苯甲酰–N-苯基羟胺即组试剂)作为络 合剂极谱测定锡迄今未见报道。我们发现 BPHA 在 pH = 5.0—6.5的 1 M NH₄AC-HAC 溶液 中没有出现极谱波,但加入锡($\mathbb N$)后产生一灵敏的 Sn-BPHA 络合物的极谱吸附₂波,其 峰 电位为 – 0.72V($\mathbb N$ SCE、下同),而铅波的峰电位为 – 0.43 V左右,不干扰测定。本文研究了产生Sn-BPHA络合物极谱波的条件,应用本体系测定了青铜中的锡,精密度和回收率均令 人满意,并研究了该波的性质。

一、实验部分

1、仪器与试剂

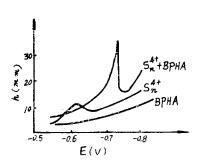
JP-1A型示波极谱仪;

三电极系统: 滴汞电极为阴极, 饱和甘汞电极为参比电极, 铂丝作为辅助电极。pH S-2 型酸度计。

锡标准溶液: 100μg/ml 用时按需要用 4N H₂SO₄ 稀释至所需浓度。

- 1 M NH₄AC 溶液 (用HAC调节至pH=6).
- **0.1% BPHA**(上海试剂一厂): 将**0.1g**的**BPHA**溶于100**ml** 50%的甲醇溶液中。 所用试剂均为分析纯。

2、试验方法


准确吸取一定量锡(\mathbb{N})标准溶液于25ml 容量瓶中,加入0.1%BPHA 2.0ml,用pH=6的 1 M NH₄AC 溶液稀释至刻度,摇匀。在示波极谱仪上原点电位-0.50 \mathbb{N} 记录波高。

本文1987年3月31日收到

二、结果与讨论

1、底液条件的选择

BPHA在 pH=6 的 1M NU, AC·底漆中没有出现极谱波。锡在该底液中于 -0.62 V 处有一极谱波,加入BPHA后 -0.62 N处的核谱波消失,于 -0.72 V处产生一个较原锡波高数倍的尖峰形的新波(图 1)。 P_1 为锡的还原波, P_2 为 Sn-BPHA 络合物的还原波,其峰电流与锡浓度在一定范围内成线性关系,因此可作为示波极谱法测定微量锡的依据。

30 NHAAC PH

5 6 pH 7 8

0.7 29 11 1.3

NH4AC(N1)

图 1 BPHA Sn'+ Sn'+ BPHA示波极谱图

图 2 酸度、NHAC、浓度对峰高的影响

(1) 溶液酸度对峰高的影响:

接上述试验方法,在不同 pH 值(分别用醋酸和浓氨水调节溶液的酸度)下测定峰 高。由图 2 可见,在 pH = 5.0—6.5间峰电流趋于稳定值。本实验采用 pH = 6 的 NH_4AC 溶 液 作测锡的底液。

(2) 醋酸铵溶液用量对峰高的影响:

按上述试验方法,改变 $NH_4AC(pH=6)$ 溶液的用量, 所得结果见图 2 ,由图 2 可知, pH=6的 NH_4AC 浓度在0.7—1.2*M* 之间 Sn-BPHA 络合物的峰高恒定不变。本实验选用 pH=6的 1 M NH_3AC 为底液。

(3) BPHA 溶液用量的选择:

吸取100µg锡标准溶液于25ml容量瓶中,按上述试验方法,改变0.1% BPHA甲醇溶液的

图3 BPHA用量的选择

用量测其峰高,结果如图 3 所示。由图可见,0.1% BPHA 用量在1.5ml以后,峰电流基本保持 不变,本实验选用25ml试液中含 0.1%BPHA甲醇溶液2.0 ml.

根 据以上实验,选定底液的条件是:pH = 6的 $1 M NH_4AC-0.008\%BPHA$.

2、峰高稳定性试验

取100µg锡的标准溶液于25ml容量瓶中,用已 选定的条件,按上述试验方法,放置不同时间测定峰电流。结果表明,在室温下峰高的稳定 性不是太令人满意的。在10min 内峰高稳定不变,这就要求加完各种试剂后于10min 内测 定完毕。

3、线性范围

在上述确定的条件下,按试验方法,锡浓度在 1.7×10^{-6} — 3.4×10^{-8} M 范 围内,峰高与浓度有良好的线性关系,低至 3.0×10^{-7} M 的锡仍能检定。

4、共存离子的影响

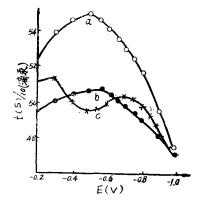
实验表明,在 25 ml 溶液中 $100 \mu \text{g}$ Ag^+ 、 Cu^{2+} 、 Ni^{2+} 、 Al^{3+} 、 As^{3+} 、 Fe^{3+} 、 Mi^{3+} 、 Sb^{3+} 、 SiO_3^{2-} 、 WO_4^{2-} 对 $25 \mu \text{g}$ 的锡波没有影响。铅波的峰电位与锡波的相差大于 200 mV 不干扰 测定。镉波与锡波靠近仅差4 mV左右干扰严重。

5、锡-BPHA板谱波的性质

(1) 毛细管电荷曲线:

毛细管电荷曲线如图 4 所示。在底液中加入BPHA或Sn-BPHA的溶液,其表面张力明显降低,表明滴汞电极表面对 BPHA 以及Sn-BPHA 络合物均有很强的吸附作用。而且由于锡的加入电毛细管曲线在-0.70V附近出现鼓包、这正好与相应络合物还原波电位对应。

(2) 温度对峰高的影响:


在20—50℃范围内,平均温度系数为+1.1%/℃,50℃—60%时为0,高于60℃时出现负值,60—70℃范围内平均温度系数为-2.4%/℃,说明温度高对吸附不利,有着明显的脱附现象,符合吸附波的特点。

(3) 起始扫描电位对峰高的影响。

在不同的起始电位下,测定峰高,结果表明,起始 扫描电位越正,峰越高,这是由于电位越正,络合物在 电报上富集的量也越多所致。

(4) 表面活性物质对波高的影响:

表面活性物质对 Sn-BPHA 络合物的峰高有明显的抑制作用。当聚乙烯醇含量在0.004%时,锡 波 降低了36%。当动物胶含量在0.004%时,锡波降低了73%,说明该体系的催化波具有一定的吸附性质。

引引至于100ml容量瓶中, 以下的10ml容量瓶中,

图4 毛细管电荷曲线 a—pH=6的1 M NH, AC-HAC 溶液; b—a+0.008%BPHA; c—b+100ug Sn(Ⅳ)

TO (11)

从上述实验得知,在-0.72V处出现的正比于锡浓度的灵敏的极谱 波,是 Sn/BPHA 络合物产生的。通过温度和表面活性剂等对峰高的影响实验,表明该波具有吸附的性质。

6、青铜合金样品的分析

(1) 青铜合金中锡的测定:

称取试样0.1000g,加入浓盐酯 5 ml,过氧化氢 2 ml,加热使样品溶解,煮沸除去剩涂的过氧化氢,冷却,于容量瓶中用 4 N硫酸稀释至100ml,摇匀。

吸取上述溶液2.0ml+50ml容量瓶中,加入0.1%BPHA 4.0ml,用pH = 6的1 M NH, AC溶液稀释至刻度,摇匀。用标准加入法测定锡的含量,结果见表 1.

(2) 回收试验:

称取一定量试样于50ml烧杯中,加入一定量的锡标准溶液,按上述试样分析的方法溶解

并定容于100ml容量瓶中,以下操作同样品分析。回收试验结果见表2。

表1 试样分析结果

项	E .	试	样	名	称	
火	Et '	青	铜	合	金	
本法测定结果Sn(%)		$6.47(\times 3), \qquad 6.50(\times 3),$			6.51(×2),	
		6.49(×4),	6.57(×2),		6.56	
平 均 值	(%)	6.51				
标准偏差	(%)	0.024				
变 动 系	数	0.37				

表2 锡的回收试验

项目	样		品 名		称	
· · · · · · · · · · · · · · · · · · ·	:	青	铜	合	金	
平 行 样 号	1		2		3	
取 样 量 (mg)	1.864		1.868		1.866	
加入量Sn (μg)	0	60.0	0	12.0	0	36.0
测得Sn量 (μg)	121.20	181.80	121.42	133.28	121,29	157.26
回收Sn量 (µg)	60.60		11.86		35.97	
回 收 率 (%)	101		98.8		99.9	

多 考 文 献

- [1] 郑森芳, 锡的极谱分析现状, 分析试验室, 1(1984), 41.
- [2] 崔木森、田维芳,微量锡的示波极谱测定,分析化学,3(1984),238.
- [3] 梁璧辉、滕济光、胡智治,矿石中微量锡的催化极谱测定,理化检验,1(1984),28.
- [4] 朽银川, 钨矿及其他矿石中Sn的余波极谱测定, 分析试验室, 5(1984), 34.

The Polarographic adsorptive Wave of Sn-BPHA Complex and Its Application

Lei Shuzhen Lin Yilan

Abstract

As shown by a single scanning polarography, Sn-BPHA complex in the solution of 1M NH_4AC (pH=6) reveals a single sensitive polarographic adsorptive wave.

It has a peak potential of -0.72 V(VS.SCE). A linear relationship holds between its peak current and the concentration of Sn in the range of $1.7 \times 10^{-6} - 3.4 \times 10^{-5} M$. It has been applied successfully to the determination of Sn in bronze, with a detection limit of $3.0 \times 10^{-7} M$ Sn.

Its properties are discussed in this paper.