[1]林珍连.平面带形区域上的α-Bloch空间的刻画[J].华侨大学学报(自然科学版),2025,46(6):729-732.[doi:10.11830/ISSN.1000-5013.202409011]
 LIN Zhenlian.Characterization of α-Bloch Space on Plane Infinite Strip[J].Journal of Huaqiao University(Natural Science),2025,46(6):729-732.[doi:10.11830/ISSN.1000-5013.202409011]
点击复制

平面带形区域上的α-Bloch空间的刻画()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第6期
页码:
729-732
栏目:
出版日期:
2025-11-20

文章信息/Info

Title:
Characterization of α-Bloch Space on Plane Infinite Strip
文章编号:
1000-5013(2025)06-0729-04
作者:
林珍连
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LIN Zhenlian
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
平面带形区域 解析函数 Bloch空间 α-Bloch空间 刻画
Keywords:
plane infinite strip analytic function Bloch space α-Bloch space characterization
分类号:
O174.56
DOI:
10.11830/ISSN.1000-5013.202409011
文献标志码:
A
摘要:
给出平面带形区域S={x+iy,|y|<π/2}上的α-Bloch空间Bα(S)的定义和S上的Bloch空间B(S)的性质。当0<α≤2时,利用一个已知的不等式,得到α-Bloch空间Bα(S)的一个刻画,并推广了Bα(D)空间上的相应结果。
Abstract:
The definition of α-Bloch space denoted by Bα(S)on plane infinite strip S={x+iy,|y|<π/2} and the properties of the Bloch space B(S)on S are presented. When 0<α ≤ 2, using a known inequality, a characterization of the α-Bloch space Bα(S)is obtained, and the corresponding results defined on the unit disk D on the Bloch space Bα(D)are generalized.

参考文献/References:

[1] ZHU Kehe.Bloch type spaces of analytic functions[J].Rocky Mountain Journal of Mathematics,1993,23(3):1143-1177.DOI:10.1216/rmjm/1181072549.
[2] ZHU Kehe.Spaces of holomorphic functions in the unit ball[M].New York:Springer Science,Business Media,Inc,2005.DOI:10.1007/0-387-27539-8.
[3] HOLLAND F,WALSH D.Criteria for membership of Bloch space and its subspace, BMOA[J].Mathematische Annalen,1986,273:317-335.DOI:10.1007/BF01451410.
[4] TIMONEY R M.Bloch functions in several complex variables, I[J].Bulletin of the London Mathematical Society,1980,12(4):241-267.DOI:10.1112/BLMS/12.4.241.
[5] SHARMA A K,UEKI S I.Compact composition operators on the Bloch space and the growth space of the upper half-plane[J].Mediterranean Journal of Mathematical,2017,14:1-9.DOI:10.1007/s00009-017-0849-2.
[6] CHOE J S,KIM H O,PARK Y Y.A Bergman-Carleson measure characterization of Bloch functions in the unit ball of Cn[J].Bulletin of the Korean Mathematical Society,1992,29(2):285-293.
[7] JEVTIC M,PAVLOVIC M.On M-harmonic Bloch space[J].Proceedings of the American Mathematical Society,1995,123(5):1385-1392.DOI:10.2307/2161125.
[8] OUYANG Caiheng,YANG Weisheng,ZHAO Ruhan.Characterizations of Bergman spaces and Bloch space in the unit ball of Cn[J].Transactions of the American Mathematical Society,1995,347(11):4301-4313.DOI:10.2307/2155039.
[9] STROETHOFF K.The Bloch space and Besov spaces of analytic functions[J].Bulletin of the Australian Mathematical Society,1996,54(2):211-219.DOI:10.1017/S0004972700017676.
[10] NOWAK M.Bloch space and M?bius invariant Besov spaces on the unit ball of Cn[J].Complex Variables, Theory and Application: An International Journal,2001,44(1):1-12.DOI:10.1080/17476930108815339.
[11] OHNO S,STROETHOFF K,ZHAO Ruhan.Weighted composition operators between Bloch-type spaces[J].Rocky Mountain Journal of Mathematics,2003,33(1):191-215.DOI:10.1216/RMJM/1181069993.
[12] REN Guangbin,TU Caifeng.Bloch space in the unit ball of Cn[J].Proceedings of the American Mathematical Society,2005,133(3):719-726.DOI:10.1090/S0002-9939-04-07617-8.
[13] WULAN H,ZHU Kehe.Bloch and BMO functions in the unit ball[J].Complex Variables and Elliptic Equations,2008,53(11):1009-1019.DOI:10.1080/17476930802429123.
[14] ZHAO Ruhan.A characterization of Bloch-type spaces on the unit ball of Cn[J].Journal of Mathematical Analysis and Applications,2007,330(1):291-297.DOI:10.1016/J.JMAA.2006.06.100.
[15] BEARDON A F,MINDA D.The hyperbolic metric and geometric function theory[C]//Proceeding of the International Workshop on Quasiconformal Mappings and Their Applications.New Delhi:Narosa Publishing House,2007:10-56.
[16] HAMELIN R.Hyperbolic metric, curvature of geodesics and hyperbolic discs in hyperbolic plane domains[J].Israel Journal of Mathematics,1990,70(1):111-128.DOI:10.1007/BF02807223.

相似文献/References:

[1]黄心中.一个单叶性判别法的推广[J].华侨大学学报(自然科学版),1993,14(3):292.[doi:10.11830/ISSN.1000-5013.1993.03.0292]
 Huang Xinzhong.A Generalization of a Criterion for Univalency[J].Journal of Huaqiao University(Natural Science),1993,14(6):292.[doi:10.11830/ISSN.1000-5013.1993.03.0292]
[2]李程鹏,李锦成.一类解析函数的Bohr定理[J].华侨大学学报(自然科学版),2021,42(4):547.[doi:10.11830/ISSN.1000-5013.202011005]
 LI Chengpeng,LI Jincheng.Bohr Theorem for A Class of Analytic Functions[J].Journal of Huaqiao University(Natural Science),2021,42(6):547.[doi:10.11830/ISSN.1000-5013.202011005]
[3]林珍连,曾旭暾.平面带形区域上一类解析函数的Bohr现象[J].华侨大学学报(自然科学版),2022,43(6):840.[doi:10.11830/ISSN.1000-5013.202109016]
 LIN Zhenlian,ZENG Xutun.Bohr Phenomenon for a Kind of Analytic Functions on Plane Strip Region[J].Journal of Huaqiao University(Natural Science),2022,43(6):840.[doi:10.11830/ISSN.1000-5013.202109016]

备注/Memo

备注/Memo:
收稿日期: 2024-09-10
通信作者: 林珍连(1970-),女,副教授,主要从事复分析的研究。E-mail:zhenlian@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(12071161); 福建省自然科学基金资助项目(2023J01127)
更新日期/Last Update: 2025-11-20