[1]赖艺颖,滕宇航,翁智峰.椭圆最优控制问题的稳定化混合有限元方法[J].华侨大学学报(自然科学版),2025,46(6):722-728.[doi:10.11830/ISSN.1000-5013.202408007]
 LAI Yiying,TENG Yuhang,WENG Zhifeng.Stabilization Mixed Finite Element Method of Elliptic Optimal Control Problem[J].Journal of Huaqiao University(Natural Science),2025,46(6):722-728.[doi:10.11830/ISSN.1000-5013.202408007]
点击复制

椭圆最优控制问题的稳定化混合有限元方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第6期
页码:
722-728
栏目:
出版日期:
2025-11-20

文章信息/Info

Title:
Stabilization Mixed Finite Element Method of Elliptic Optimal Control Problem
文章编号:
1000-5013(2025)06-0722-07
作者:
赖艺颖 滕宇航 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LAI Yiying TENG Yuhang WENG Zhifeng
School of Mathematical Science, Huaqiao University, Quanzhou 362021, China
关键词:
无约束椭圆最优控制问题 稳定化混合有限元 低次等阶有限元对 误差估计
Keywords:
unconstrained elliptic optimal control problem stabilization mixed finite element low order equal rank finite element pair error estimation
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202408007
文献标志码:
A
摘要:
采用低次等阶混合元结合局部高斯积分稳定化方法求解无约束椭圆最优控制问题。首先,结合变分原理和最优化理论,将求解椭圆最优控制问题转化为状态方程、对偶方程和最优性条件三者的联立系统。其次,构造椭圆最优控制问题的稳定化混合元格式,并分析该格式的误差估计。最后,通过数值算例验证格式的有效性。
Abstract:
Low order equal rank mixed elements combined with local Gauss integration stabilization method to solve unconstrained elliptical optimal control problems are used. Firstly, combining the variational principle and optimization theory, the solution to the elliptic optimal control problem is transformed into an associative system of state equation, dual equation and optimality condition. Secondly, the stabilization mixed element schemes of the elliptical optimal control problem are constructed, and the error estimations of these schemes are analyzed. Finally, the effectiveness of the schemes are verified through numerical examples.

参考文献/References:

[1] ZHU Jiang,ZENG Qingcun.A mathematical formulation for optimal control of air pollution[J].Science in China Series D: Earth Sciences,2003,46(10):994-1002.DOI:10.1007/bf02959394.
[2] MARTINEZ A,RODRIGUEZ C,VAZQUEZ-MENDEZ M E.Theoretical and numerical analysis of an optimal control problem related to wastewater treatment[J].SIAM Journal on Control and Optimization,2000,38(5):1534-1553.DOI:10.1080/01630569908816878.
[3] ZHU Jiang,ZENG Qingcun,GUO Dongjian,et al.Optimal control problems related to the navigation channel engineering[J].Science in China Series E: Technological Sciences,1997,40(1):82-88.DOI:10.1007/bf02916593.
[4] 龚伟,刘会坡,严宁宁.最优控制问题的有限元高精度分析及其应用[J].中国科学:数学,2015,45(7):953-974.DOI:10.1360/N012014-00182.
[5] 杨星月,杨荣奎,冯民富.对流扩散反应方程的一个稳定化混合有限元[J].四川大学学报(自然科学版),2023,60(5):11-18.DOI:10.19907/j.0490-6756.2023.051001.
[6] 朱家莉,尚月强.不可压缩流的并行两水平稳定有限元算法[J].计算物理,2022,39(3):309-317.DOI:10.19596/j.cnki.1001-246x.8411.
[7] 王嘉华,李宏.粘弹性波动方程的H1-Galerkin时空混合有限元分裂格式[J].计算数学,2023,45(2):177-196.DOI:10.12286/jssx.j2021-0892.
[8] 唐跃龙,华玉春.时间分数阶扩散方程分裂正定混合元有限元方法[J].高等学校计算数学学报,2022,44(4):299-310.
[9] 郑波,尚月强.定常Navier-Stokes方程基于完全重叠型区域分解的并行稳定化有限元方法[J].中国科学:数学,2020,50(8):1117-1130.DOI:10.1360/N012018-00180.
[10] 李西,罗加福,冯民富.非定常 Navier-Stokes 方程的一种非线性局部投影稳定化有限元方法[J].四川大学学报(自然科学版),2021,58(3):1-9.DOI:10.19907/j.0490-6756.2021.031002.
[11] FU Hongfei,RUI Hongxing,HOU Jian,et al.A stabilized mixed finite element method for elliptic optimal control problems[J].Journal of Scientific Computing,2016,66(3):968-986.DOI:10.1007/s10915-015-0086-4.
[12] HOU Tianliang,LENG Haitao,LUAN Tian.Two-grid methods for P20-P1 mixed finite element approximation of general elliptic optimal control problems with low regularity[J].Numerical Methods for Partial Differential Equations,2020,36(5):1184-1202.DOI:10.1002/num.22471.
[13] 唐跃龙,华玉春.椭圆最优控制问题分裂正定混合有限元方法的超收敛性分析[J].计算数学,2021,43(4):506-515.DOI:10.12286/jssx.j2020-0703.
[14] XU Changling,CHEN Hongbo.A two-grid P20-P1 mixed finite element scheme for semilinear elliptic optimal control problems[J].AIMS Mathematics,2022,7(4):6153-6172.DOI:10.3934/math.2022342.
[15] LIONS J L.Optimal control of systems governed by partial differential equations[M].Berlin:Springer,1971.
[16] BOCHEV P B,DOHRMANN C R,GUNZBURGER M D.Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM Journal on Numerical Analysis,2006,44(1):82-101.DOI:10.1137/s00361429054444 82.
[17] LI Jian,HE Yinnian,CHEN Zhangxin.A new stabilized finite element method for the transient Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1/2/3/4):22-35.DOI:10.1016/j.cma.2007.06.029.
[18] LI Jian,HE Yinnian.A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J].Journal of Computational and Applied Mathematics,2008,214(1):58-65.DOI:10.1016/j.cam.2007.02.015.
[19] CHEN Zhangxin,WANG Zhen,ZHU Liping,et al.Analysis of the pressure projection stabilization method for the Darcy and coupled Darcy-Stokes flows[J].Computational Geosciences,2013,17(6):1079-1091.DOI:10.1007/s10596-013-9376-9.
[20] LU Zuliang,CHEN Yanping.L-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations[J].Numerical Analysis and Applications,2009,12(1):74-86.DOI:10.1134/s1995423909010078.
[21] 罗振东.混合有限元法基础及其应用[M].北京:科学出版社,2006.

备注/Memo

备注/Memo:
收稿日期: 2024-08-07
通信作者: 翁智峰(1985-),男,副教授,博士,主要从事偏微分方程数值解的研究。E-mail:zfwmath@163.com。
基金项目: 国家自然科学基金资助项目(11701197); 福建省自然科学基金资助项目(2022J01308)
更新日期/Last Update: 2025-11-20