[1]高林,田景旭,崔鏸元,等.电子回流阻挡层提升钙钛矿太阳能电池的光电性能[J].华侨大学学报(自然科学版),2025,46(6):666-674.[doi:10.11830/ISSN.1000-5013.202509009]
 GAO Lin,TIAN Jingxu,CUI Huiyuan,et al.Electronic Reflux Barrier Layer for Improving Photoelectric Performance of Perovskite Solar Cells[J].Journal of Huaqiao University(Natural Science),2025,46(6):666-674.[doi:10.11830/ISSN.1000-5013.202509009]
点击复制

电子回流阻挡层提升钙钛矿太阳能电池的光电性能()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第6期
页码:
666-674
栏目:
出版日期:
2025-11-20

文章信息/Info

Title:
Electronic Reflux Barrier Layer for Improving Photoelectric Performance of Perovskite Solar Cells
文章编号:
1000-5013(2025)06-0666-09
作者:
高林1 田景旭12 崔鏸元1 吴季怀1 兰章1 李立清2 杜振波1 田志飞3
1. 华侨大学 材料科学与工程学院, 福建 厦门 361021;2. 中南大学 能源科学与工程学院, 湖南 长沙 410083;3. 通威高纯晶硅有限公司, 内蒙古 包头 014010
Author(s):
GAO Lin1 TIAN Jingxu12 CUI Huiyuan1 WU Jihuai1LAN Zhang1 LI Liqing2 DU Zhenbo1 TIAN Zhifei3
1. College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; 2. School of Energy Science and Engineering, Central South University, Changsha 410083, China; 3. Tongwei High-Purity Polysilicon Limited Company, Baotou 014010, China
关键词:
钙钛矿太阳能电池 界面工程 缺陷钝化 电子回流
Keywords:
perovskite solar cells interface engineering defect passivation electron reflux
分类号:
TM914.4;TN305.2
DOI:
10.11830/ISSN.1000-5013.202509009
文献标志码:
A
摘要:
采用旋涂法,在二氧化锡(SnO2)与钙钛矿层间引入1-金刚烷胺盐酸盐(ADA)作为界面改性剂,形成电子回流阻挡层,起到钝化界面缺陷、阻挡电子回流和抑制界面非辐射复合的作用,并能提升钙钛矿太阳能电池的光电性能。结果表明:ADA中氨基孤对电子可与未配位Pb2+配位,有利于形成高质量的钙钛矿薄膜,降低缺陷密度,提升开路电压;经过ADA改性的最佳钙钛矿太阳能电池功率转换效率(PCE)达到了23.07%,开路电压为1.13 V,短路电流密度为24.67 mA·cm-2,填充因子为82.59%;改性器件在空气环境中存放1 000 h后,PCE仍保持85%以上,效率和稳定性均显著增强。
Abstract:
Using the spin-coating method, 1-amantadine hydrochloride(ADA)was introduced as an interface modifier between tin dioxide(SnO2)and perovskite layers to form an electron reflow barrier layer, which served to passivate interface defects, prevent electron reflow, and suppress non-radiative recombination at the interface, and could also enhance the photoelectric performance of perovskite solar cells. The results showed that the amino lone pair electrons in ADA could coordinate with uncoordinated Pb2+, which was conducive to the formation of high-quality perovskite films, reducing defect density and increasing open-circuit voltage. The optimal power conversion efficiency(PCE)of the perovskite solar cells modified by ADA reached 23.07%, theopen-circuit voltage was 1.13 V, the short-circuit current density was 24.67 mA·cm-2, and the fill factor was 82.59%. After being stored in an air environment for 1 000 h, the modified device still maintained a PCE of over 85%, and both efficiency and stability were significantly enhanced.

参考文献/References:

[1] ZUO Lijian,LI Zexin,CHEN Hongzheng.Ion migration and accumulation in halide perovskite solar cells[J].Chinese Journal of Chemistry,2023,41(7):861-876.DOI:10.1002/cjoc.202200505.
[2] TANG Xinsheng,WANG Zilong,CHEN Shangshang.Modulation of SnO2 electron-transporting materials in perovskite solar cells[J].Solar RRL,2025,9(13):2500247.DOI:10.1002/solr.202500247.
[3] XIE Jiangsheng,HUANG Kun,YU Xuegong,et al.Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J].ACS Nano,2017,11(9):9176-9182.DOI:10.1021/acsnano.7b04070.
[4] TIAN Jingxu,WU Jihuai,LI Ruoshui,et al.Cage polyamine molecule modulating the buried interface of tin oxide/perovskite in photovoltaic devices[J].Nano Energy,2023,118:108939.DOI:10.1016/j.nanoen.2023.108939.
[5] ZHENG Xiaopeng,CHEN Bo,DAI Jun,et al.Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J].Nature Energy,2017,2:1-9.DOI:10.1038/nenergy.2017.102.
[6] 王伟,李芸,熊永强,等.金刚烷类化合物的热稳定性研究及其地质意义[J].地球化学,2023,52(1):29-40.DOI:10.19700/j.0379-1726.2023.01.003.
[7] ?N I,IBI?瘙塁OGLU H,KILI? A,et al.Nucleophilic substitution reactions of adamantane derivatives with cyclophosphazenes[J].Inorganica Chimica Acta,2012,387:226-233.DOI:10.1016/j.ica.2012.01.021.
[8] DAI Runying,MENG Xiangchuan,ZHANG Jiaqi,et al.Pre-buried interface strategy for stable inverted perovskite solar cells based on ordered nucleation crystallization[J].Advanced Functional Materials,2023,33(45):2305013.DOI:10.1002/adfm.202305013.
[9] DU Shuxian,HUANG Hao,LAN Zhineng,et al.Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells[J].Nature Communications,2024,15:5223-5234.DOI:10.1038/s41467-024-49617-y.
[10] XU Chang,HANG Pengjie,KAN Chenxia,et al.Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells[J].Nature Communications,2025,16:835-846.DOI:10.1038/s41467-025-56182-5.
[11] CHEN Pengxu,PAN Weichun,ZHU Sijia,et al.Buried modification with tetramethylammonium chloride to enhance the performance of perovskite solar cells with n-i-p structure[J].Chemical Engineering Journal,2023,468:143652.DOI:10.1016/j.cej.2023.143652.
[12] 董鹏宇,姜月,杨正池,等.NbSe2纳米片优化钙钛矿太阳能电池的埋底界面[J].物理化学学报,2025,41(3):133-142.DOI:10.3866/PKU.WHXB202407025.
[13] LIU Baibai,HE Dongmei,ZHOU Qian,et al.1-adamantanamine hydrochloride resists environmental corrosion to obtain highly efficient and stable perovskite solar cells[J].The Journal of Physical Chemistry Letters,2023,14(10):2501-2508.DOI:10.1021/acs.jpclett.3c00298.
[14] TIAN Jingxu,WU Jihuai,LIN Yuhe,et al.Cage polyamine molecule hexamethylenetetramine as additives for improving performance of perovskite solar cells[J].Energy Technology,2022,11(3):2201182.DOI:10.1002/ente.202201182.
[15] 宋健,苏星宙,姚倩楠,等.多功能氨基酸衍生物钝化的高性能钙钛矿太阳能电池[J].无机化学学报,2023,39(2):327-336.DOI:10.11862/CJIC.2022.292.
[16] AHN N,SON D Y,JANG I H,et al.Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(Ⅱ)iodide[J].Journal of the American Chemical Society,2015,137(27):8696-8699.DOI:10.1021/jacs.5b04930.
[17] LIM E L,WEI Zhanhua.A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells[J].Journal of Energy Chemistry,2024,90(3):504-510.DOI:10.1016/j.jechem.2023.11.021.
[18] 王云飞,刘建华,于美,等.SnO2表面卤化提高钙钛矿太阳能电池光伏性能[J].物理化学学报,2021,37(3):118-128.DOI:10.3866/PKU.WHXB202006030.
[19] ZHU Pengchen,GU Shuai,LUO Xin,et al.Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer[J].Advanced Energy Materials,2020,10(3):1903083.DOI:10.1002/aenm.201903083.
[20] OZEROVA V V,EMELIANOV N A,GUTSEV L G,et al.Enhanced photostability of multication lead halide perovskites through the use of azaadamantane-based modifiers[J].Materials Today Chemistry,2023,30:101590.DOI:10.1016/j.mtchem.2023.101590.
[21] 王秋祥,王仕博,耿嘉莲,等.钙钛矿薄膜样品的紫外光电子能谱制样方法[J].华侨大学学报(自然科学版),2023,44(5):600-606.DOI:10.11830/ISSN.1000-5013.202302021.
[22] ZHANG Yanan,LI Bo,ZHANG Luyuan,et al.Efficient electron transfer layer based on Al2O3 passivated TiO2 nanorod arrays for high performance evaporation-route deposited FAPbI3 perovskite solar cells[J].Solar Energy Materials and Solar Cells,2017,170:187-196.DOI:10.1016/j.solmat.2017.05.072.
[23] WEN Xiaoru,WU Jiamin,YE Meidan,et al.Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells[J].Chemical Communications,2016,52(76):11355-11358.DOI:10.1039/c6cc06290c.
[24] ZHANG Jie,JU?REZ-P?REZE J,MORA-SER? I,et al.Fast and low temperature growth of electron transport layers for efficient perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(13):4909-4915.DOI:10.1039/c4ta06416j.
[25] 殷逍遥,朱文昊,施谱垚,等.SnCl2界面修饰全无机CsPbBr3钙钛矿太阳能电池的制备[J].无机化学学报,2025,41(3):469-479.DOI:10.11862/CJIC.20240309.
[26] WANG Ziyue,KANG Shuaiqing,ZHOU Xia,et al.Piperazine-assisted construction of 2D/3D wide-bandgap perovskite for realizing high-efficiency perovskite/organic tandem solar cells[J].Chinese Journal of Chemistry,2024,42(16):1819-1827.DOI:10.1002/cjoc.202400071.
[27] DENG Chunyan,TAN Lina,WU Jihuai,et al.Solvation-driven grain boundary passivation improving the performance of perovskite solar cells[J].Advanced Energy Materials,2024,14(10):2303387.DOI:10.1002/aenm.202303387.
[28] DUAN Biwen,GUO Linbao,YU Qing,et al.Highly efficient solution-processed CZTSSe solar cells based on a convenient sodium-incorporated post-treatment method[J].Journal of Energy Chemistry,2020,40:196-203.DOI:10.1016/j.jechem.2019.03.029.

相似文献/References:

[1]王莹,吴季怀.电子传输层表界面工程对钙钛矿薄膜结晶行为的影响[J].华侨大学学报(自然科学版),2025,46(6):613.[doi:10.11830/ISSN.1000-5013.202511009]
 WANG Ying,WU Jihuai.Influence of Electron Transport Layer Interface Engineering on Crystallization Behavior of Perovskite Films[J].Journal of Huaqiao University(Natural Science),2025,46(6):613.[doi:10.11830/ISSN.1000-5013.202511009]

备注/Memo

备注/Memo:
收稿日期: 2025-09-02
通信作者: 兰章(1981-),男,教授,博士,博士生导师,主要从事纳米材料与钙钛矿太阳能电池的研究。E-mail:lanzhang@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(51972123, 52372190); 福建省自然科学基金资助项目(2023J01116); 环境友好功能材料教育部工程研究中心资助项目(51101, 5032502)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2025-11-20