[1]王莹,吴季怀.电子传输层表界面工程对钙钛矿薄膜结晶行为的影响[J].华侨大学学报(自然科学版),2025,46(6):613-624.[doi:10.11830/ISSN.1000-5013.202511009]
 WANG Ying,WU Jihuai.Influence of Electron Transport Layer Interface Engineering on Crystallization Behavior of Perovskite Films[J].Journal of Huaqiao University(Natural Science),2025,46(6):613-624.[doi:10.11830/ISSN.1000-5013.202511009]
点击复制

电子传输层表界面工程对钙钛矿薄膜结晶行为的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第6期
页码:
613-624
栏目:
出版日期:
2025-11-20

文章信息/Info

Title:
Influence of Electron Transport Layer Interface Engineering on Crystallization Behavior of Perovskite Films
文章编号:
1000-5013(2025)06-0613-12
作者:
王莹 吴季怀
华侨大学 材料科学与工程学院, 福建 厦门 361021
Author(s):
WANG Ying WU Jihuai
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
钙钛矿太阳能电池 电子传输层 钙钛矿活性层 界面工程 钙钛矿结晶
Keywords:
perovskite solar cells electron transport layer perovskite active layer interface engineering perovskite crystallization
分类号:
TM914.4;TB302
DOI:
10.11830/ISSN.1000-5013.202511009
文献标志码:
A
摘要:
钙钛矿太阳能电池的光伏性能与稳定性高度依赖于钙钛矿活性层的结构和性质。通过调控电子传输层/钙钛矿活性层(ETL/PVK)异质界面,影响钙钛矿薄膜的成核热力学与动力学过程及其的结晶行为、晶粒取向和微观形貌。文中从界面物理化学角度出发,系统梳理ETL表面性质(包括表面能、浸润性、官能团和晶格匹配)如何引导钙钛矿前驱体从溶液到固相的演化路径。重点分析ETL调控钙钛矿结晶的三大机制:通过界面能调控成核势垒影响成核密度;通过表面官能团引导晶体生长方向;通过界面耦合效应诱导择优取向形成。进一步分析了由此产生的晶体学特征(晶粒尺寸、取向、晶界性质)对电荷传输、离子迁移和器件稳定性的影响,旨在深化对ETL/ PVK界面科学本质的理解,为制备优质钙钛矿薄膜提供依据。
Abstract:
The photovoltaic performance and stability of perovskite solar cells are highly dependent on the structure and properties of the perovskite active layer. By regulating the electron transport layer/perovskite active layer(ETL/PVK)heterojunction interface, the nucleation thermodynamics and kinetics, as well as crystallization behavior, grain orientation, and microstructure of perovskite films are influenced. This review systematically examines how the surface properties of ETL(including surface energy, wettability, functional groups, and lattice matching)guide the evolution of perovskite from solution precursors to solid phase according to interfacial physicochemistry. The three main mechanisms of the ETL regulating perovskite crystallization are discussed: Controlling the nucleation barrier through interface energy to affect nucleation density; Guiding crystal growth direction through surface functional group; Inducing preferred orientation formation through interface coupling effect. Further analysis is conducted on the impact of the resulting crystallographic features(grain size, orientation, grain boundary properties)on charge transport, ion migration, and device stability. This review aims to deepen the understanding of the scientific essence of ETL/PVK interface and provide a theoretical support for the preparation of high-quality perovskite films.

参考文献/References:

[1] NATIONAL RENEWABLE ENERGY LABORATORY.Best research-cell efficiency chart[EB/OL].(2025-07-15)[2025-11-10] .https://www.nrel.gov/pv/cell-efficiency.html.
[2] SNAITH H J.Perovskites: The emergence of a new era for low-cost,high-efficiency solar cells[J].The Journal of Physical Chemistry Letters,2013,4(6):3623-3630.DOI:10.1021/jz4020162.
[3] CORRE B,JUAN P,SALIBA M,BUONASSIS T,et al.Promises and challenges of perovskite solar cells[J].Science,2017,358(26):739-744.DOI:10.1126/science.aam6323.
[4] YANG Haichao,GUO Zhihao,XU Zhiyuan,et al.Crystallization modulation through electron transport layer surface reconstruction enables high-performance full-air-processed perovskite solar cells[J].Advanced Materials,2025,762(28):1-100.DOI:10.1002/adma.202510967.
[5] PARK S Y,ZHU Kai.Advances in SnO2 for efficient and stable n-i-p perovskite solar cells[J].Advanced Materials,2022,34(27):1-106.DOI:10.1002/adma.202110438.
[6] LI Bo,LI Shuai,GONG Jianqiu,et al.Fundamental understanding of stability for halide perovskite photovoltaics: The importance of interfaces[J].Chemisty,2024,10(1):35-47.DOI:10.1016/j.chempr.2023.09.002.
[7] WANG Rui,XUE Jingjing,WANG Kaili,et al.Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J].Science,2019,366(6472):1509-1513.DOI:10.1126/Science.aay9698.
[8] DUNLAP S,WILEY A,ZHOU Yuanyuan,et al.Synthetic approaches for halide perovskite thin films[J].Chemical Reviews,2018,119(5):3193-3295.DOI:10.1021/acs.chemrev.8b00318.
[9] ALI F,ROLDAN C C,SOHAIL M,et al.Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability[J].Advanced Energy Materials,2020,10(48):1-100.DOI:10.1002/aenm.202002989.
[10] SHEN Jinliang,LI Na,WANG Yuhang,et al.Delaying crystallization and anchoring the grain boundaries defects via π-π stacked molecules for efficient and stable wide-bandgap perovskite solar cells[J].Chemical Engineering Journal,2024,489(1):284-292.DOI:10.1016/j.cej.2024.151459.
[11] CHEN Haoran,CHEN Yuetian,ZHANG Taiyang,et al.Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics[J].Small Structures,2021,2(5):200-205.DOI:10.1002/sstr.202000130.
[12] GE Jinghao,LI Fengzhu,ZHANG Lu,et al.Unraveling the thermodynamic origins and kinetic pathways of intermediate phase engineering in perovskite solar cells[J].Matter,2025,8(7):201-209.DOI:10.1016/j.matt.2025.102144.
[13] KANG Ziyong,FENG Peng,WANG Kun,et al.Synchronous dimension-crystallization engineering enables highly efficient 2D/3D tin perovskite solar cells[J].Energy & Environmental Science,2025,18(9):4108-4119.DOI:10.1039/D4EE06142J.
[14] RAJAGOPAL A,YAO Kai,JEN A K Y.Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering[J].Advanced Materials,2018,30(32):30-55.DOI:10.1002/adma.201800455.
[15] WANG Borui,LI Nan,WANG Zezhang,et al.Implanting crystal nuclei at the buried interface to regulate the growth of inorganic perovskite for high-performance solar cells[J].Advanced Materials,2025,18(5):450-457.DOI:10.1002/adma.202515469.
[16] SUN Qing,LIU Gang,DUAN Shaocong,et al.Perovskite crystallization regulation by a green antisolvent for high-performance NiOx-based inverted solar cells[J].Nano Letters,2025,25(10):3883-3890.DOI:10.1021/acs.nanolett.4c05993.
[17] LI Shengwen,GU Hao,ZHU Annan,et al.Anion-cation synergistic regulation of low-dimensional perovskite passivation layer for perovskite solar cells[J].Advanced Materials,2025,37(28):986-988.DOI:10.1002/adma.202500988.
[18] SONG Peiquan,HOU Enlong,LIANG Yuming,et al.Regulating orientational crystallization and buried interface for efficient perovskite solar cells enabled by a multi-fluorine-containing higher fullerene derivative[J].Advanced Functional Materials,2023,33(45):230-243.DOI:10.1002/adfm.202303841.
[19] HUI Jingjing,ZHAN Jun,ZHANG Jinxia,et al.Super strong bonding at the interface between ETL and perovskite for robust flexible optoelectronic devices[J].Angewandte Chemie International Edition,2025,64(14):123-132.DOI:10.1002/ange.202424483.
[20] CAO Yang,YANG Li,YAN Nan,et al.Buried interface modification for high performance and stable perovskite solar cells[J].Energy & Environmental Science,2025,18(8):3659-3667.DOI:10.1039/D4EE05466K.
[21] GU Lei,SU Jiacheng,CHEN Ruiqian,et al.Modifying buried heterogeneous contacts to promote efficient carrier extraction for efficient perovskite solar cells[J].Chemical Engineering Journal,2025,509(6)161-168.DOI:10.1016/j.cej.2025.161387.
[22] LIU Qi,WANG Zhen,WANG Zixiang,et al.Heterogeneous nucleation-induced upward crystallization for perovskite solar cells[J].ACS Energy Letters,2025,10(6):2972-2977.DOI:10.1021/acsenergylett.5c00758.
[23] LIN Yu,LIN Jiaru,YAN Haocong,et al.Pre-nucleation chemical bath deposition of high-performance and reproducible SnO2 electron transport layer for perovskite solar cells[J].Advanced Functional Materials,2025,6(9):3044-3052.DOI:10.1002/adfm.202512725.
[24] LI Shude,XIAO Yun,SU Rui,et al.Coherent growth of high-miller-index facets enhances perovskite solar cells[J].Nature,2024,635(8040):874-881.DOI:10.1038/s41586-024-08159-5.
[25] WANG Yurui,LIN Renxing,LIU Chenshuaiyu,et al.Homogenized contact in all-perovskite tandems using tailored 2D perovskite[J].Nature,2024,635(8040):867-873.DOI:10.1038/s41586-024-08158-6.
[26] LI Quanzhou,Wang Min,LI Liang.Molecularly guided buried-interface regulation for efficient and stable inverted perovskite solar cells[J/OL].Energy & Environmental Science,1-36(2025-11-04)[2025-11-13] .https://doi.org/10.1039/D5EE05094D.
[27] LIU Naihe,ZHANG Gao,WEI Meng,et al.Particle decoration enables solution-processed perovskite integration with fully-textured silicon for efficient tandem solar cells[J].Nature Communications,2025,16(1): 35-43.DOI:10.1038/s41467-025-64546-0.
[28] JIANG Qi,TONG Jinhui,XIAN Yeming,et al.Surface reaction for efficient and stable inverted perovskite solar cells[J].Nature,2022,611(7935):278-283.DOI:10.1038/s41586-022-05268-x.
[29] LI Wei,ROTHMANN M U,ZHU Ye,et al.The critical role of composition-dependent intragrain planar defects in the performance of MA1-xFAxPbI3 perovskite solar cells[J].Nature Energy,2021,6(6):624-632.DOI:10.1038/s41560-021-00830-9.
[30] GE Yansong,WANG Haibing,WANG Cheng,et al.Intermediate phase engineering with 2,2-azodi(2-methylbutyronitrile)for efficient and stable perovskite solar cells[J].Advanced Materials,2023,35(23):221-228.DOI:10.1002/adma.202210186.
[31] LI Chi,GANESAN P,LI Yuheng,et al.Synergistic electron-deficient surface engineering: A key factor in dictating electron carrier extraction for perovskite photovoltaics[J].Journal of the American Chemical Society,2025,147(29):25738-25749.DOI:10.1021/jacs.5c07357.
[32] ZHAO Minming,GU Wei Min,JIANG Ke,et al.2,2’-bipyridyl-4,4’-dicarboxylic acid modified buried interface of high-performance perovskite solar cells[J].Angewandte Chemie,2025,64(6):638-645.DOI:10.1002/ange.202418176.
[33] LIU Yinjiang,KONG Tengfei,ZHANG Yang,et al.Stable and efficient perovskite photovoltaics via a three-in-one passivating approach by aminoacetonitrile hydrochloride[J].Advanced Energy Materials,2025,15(20):245-252.DOI:10.1002/aenm.202404638.
[34] QIN Fei,MENG Wei,FAN Jiacheng,et al.Enhanced thermochemical stability of CH3NH3PbI3 perovskite films on zinc oxides via new precursors and surface engineering[J].ACS Applied Materials & Interfaces,2017,9(31):26045-26051.DOI:10.1021/acsami.7b07192.
[35] XIONG Lianbin,GUO Yaxiong,WEN Jian,et al.Review on the application of SnO2 in perovskite solar cells: Advanced functional materials[J],2025,28(35):180-198.DOI:10.1002/adfm.201802757.
[36] CHEN Haibin,DING Xihong,XU Pan,et al.Forming intermediate phase on the surface of PbI2 precursor films by short-time DMSO treatment for high-efficiency planar perovskite solar cells via vapor-assisted solution process[J].ACS Applied Materials & Interfaces,2018,10(2):1781-1791.DOI:10.1021/acsami.7b17781.
[37] LONG Cao,WANG Ning,HUNG Ke,et al.Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor[J].Chinese Physics B,2020,29(4):483-490.DOI:10.1088/1674-1056/ab7744.
[38] BAI Dongliang,WANG Haoxu,YANG Shaoan,et al.Formamidinium in situ assistance for buried interfaces in perovskite solar cells[J].Advanced Energy Materials,2025,15(31):250-256.DOI:10.1002/aenm.202501206.
[39] LUO Chao,ZHOU Qisen,Wang Keli,et al.Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells[J].Nature Materials,2025,24(8):1-8.DOI:10.1038/s41563-025-02275-x.
[40] TIAN Ruijia,LIU Chang,MENG Yuanyuan,et al.Nucleation regulation and mesoscopic dielectric screening in α-FAPbI3[J].Advanced Materials,2024,36(13):993-999.DOI:10.1002/adma.202309998.
[41] WANG Xin,LI Yuwei,XU Yubing,et al.Organometallic perovskite single crystals grown on lattice-matched substrate for photodetection[J].Nano Materials Science,2019,2(3):292-296.DOI:10.1016/j.nanoms.2019.10.007.
[42] WANG Fei,WANG Taomiao,SUN Yonggui,et al.Two-step perovskite solar cells with > 25% efficiency: Unveiling the hidden bottom surface of perovskite layer[J].Advanced Materials,2024,36(31):240-248.DOI:10.1002/adma.202401476.
[43] HU Ping,ZHOU Wenbo,CHEN Junliang,et al.Multidentate anchoring strategy for synergistically modulating crystallization and stability towards efficient perovskite solar cells[J].Chemical Engineering Journal,2023,480(15):148-159.DOI:10.1016/j.cej.2023.148249.
[44] ZHANG Zuhong,ZHU Rui,TANG Ying,et al.Anchoring charge selective self-assembled monolayers for tin-lead perovskite solar cells[J].Advanced Materials,2024,36(18):231-239.DOI:10.1002/adma.202312264.
[45] AUZELLE T,ULLRICH F,HIETZSCHOLD S,et al.External control of GaN band bending using phosphonate self-assembled monolayers[J].ACS Applied Materials & Interfaces,2021,13(3):4626-4635.DOI:10.1021/acsami.0c17519.
[46] CHAO Luo,GUAN Ha,ZHAO Qing,et al.Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer[J].Nature photonics,2023,17(10):856-864.DOI:10.1038/s41566-023-01247-4.
[47] LI Qing,ZHENG Yichun,HOU Yu,et al.Graphene-polymer reinforcement of perovskite lattices for durable solar cells[J].Science,2025,387(6738):1069-1077.DOI:10.1126/science.adu5563.
[48] YANG Jianxiong,WANG Zelin,ZHAO Xiaojia,et al.Guiding vertical growth and improving the buried interface of Pb-Sn perovskite films with 2D perovskite seeds for efficient narrow-bandgap perovskite solar cells and tandems[J].Energy & Environmental Science,2025,18(6):2883-2894.DOI:10.1039/D4EE05948D.
[49] LIU Chang,CHENG Yibing,GE Ziyi.Understanding of perovskite crystal growth and film formation in scalable deposition processes[J].Chemical Society Reviews,2020,49(6):1653-1687.DOI:10.1039/c9cs00711c.
[50] MAHESH S,BALL J M,OLIVER R D,et al.Revealing the origin of voltage loss in mixed-halide perovskite solar cells[J].Energy & Environmental Science,2020,13(1):258-267.DOI:10.1039/c9ee02162k.
[51] ZHANG Jindan,LI Chi,ZHU Mengqi,et al.Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks[J].Nano Energy,2023,108(17):108-115.DOI:10.1016/j.nanoen.2023.108217.
[52] ZHOU Bo,ZHAO Pei,GUO Junxue,et al.Solvent-additive cascade engineering enables single-oriented perovskite films with facet-driven performance and stability[J].Energy & Environmental Science,2025,15(1):102-112.DOI:10.1039/D5EE04415D.
[53] WANG Guoliang,ZHRNG Jianghui,DUA Weiyuan,et al.Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells[J].Joule,2023,7(11):2583-2594.DOI:10.1016/j.joule.2023.09.007.
[54] SIVADA D,SINGAREDD A,VINOD C G,et al.Ionic charge imbalance in perovskite solar cells[J].The Journal of Physical Chemistry C,2023,127(46):22766-22774.DOI:10.1021/acs.jpcc.3c05673.
[55] FANG Zihan,WANG Luyao,MU Xijiao,et al.Grain boundary engineering with self-assembled porphyrin supramolecules for highly efficient large-area perovskite photovoltaics[J].Journal of the American Chemical Society,2021,143(45):18989-18996.DOI:10.1021/jacs.1c07518.
[56] FAN Zhenghui,ZHOU Bin,LU Xiaojuan,et al.Thermal expansion regulation of metal halide perovskites for robust flat-panel X-ray image detectors[J].Device,2025,3(3):100617.DOI:10.1016/j.device.2024.100617.
[57] ZHANG Haolin,WANG Ze,WAN Haoyu,et al.Strain relaxation and phase regulation in quasi-2D perovskites for efficient solar cells[J].Journal of Materials Chemistry A,2023,11(28):15301-15310.DOI:10.1039/d3ta01935g.
[58] CORDERO F,CRACIUM F,TREQUATTRIN F,et al.Stability of cubic FAPbI3 from X-ray diffraction, anelastic and dielectric measurements[J].Journal of Physical Chemistry Letters,2019,10(10):2463-2469.DOI:10.1021/acs.jpclett.9b00896.
[59] ZHU Cheng,NIU Xiuxiu,FU Yuhao,et al.Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J].Nature Communications,2019,815(10):497-508.DOI:10.1038/s41467-019-08507-4.
[60] SHIN K H,PARK S K,NAKHANICEJ P,et al.Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes[J].Applied Physics Reviews,2020,7(4):41-56.DOI:10.1063/5.0020805.
[61] TSAI H,ASADPOUR R,BLANCON J-C,et al.Light-induced lattice expansion leads to high-efficiency perovskite solar cells[J].Science,2018,360(6384):67-70.DOI:10.1126/science.aap8671.

相似文献/References:

[1]高林,田景旭,崔鏸元,等.电子回流阻挡层提升钙钛矿太阳能电池的光电性能[J].华侨大学学报(自然科学版),2025,46(6):666.[doi:10.11830/ISSN.1000-5013.202509009]
 GAO Lin,TIAN Jingxu,CUI Huiyuan,et al.Electronic Reflux Barrier Layer for Improving Photoelectric Performance of Perovskite Solar Cells[J].Journal of Huaqiao University(Natural Science),2025,46(6):666.[doi:10.11830/ISSN.1000-5013.202509009]

备注/Memo

备注/Memo:
收稿日期: 2025-11-13
通信作者: 吴季怀(1958-),男,教授,博士,博士生导师,主要从事材料化学和新能源材料研究。E-mail:jhwu@hqu.edu.cn。
基金项目: 国家 863 计划资助项目(2009AA03Z217); 国家自然科学基金项目(52372190, 51972123, U1705256)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2025-11-20