参考文献/References:
[1] 王伟凝,王励,赵明权,等.基于并行深度卷积神经网络的图像美感分类[J].自动化学报,2016,42(6):904-914.DOI:10.16383/j.aas.2016.c150718.
[2] 蚁静缄.可计算的图像美学分类与评价系统研究[D].广州: 华南理工大学,2013.
[3] SUN Litian,YAMASAKI T,AIZAWA K.Photo aesthetic quality estimation using visual complexity features[J].Multimedia Tools and Applications,2018,77(5):5189-5213.DOI:10.1007/s11042-017-4424-4.
[4] ZHANG Xiaodan,GAO Xinbo,LU Wen,et al.Beyond vision: A multimodal recurrent attention convolutional neural network for unified image aesthetic prediction tasks[J].IEEE Transactions on Multimedia,2020,23:611-623.DOI:10.1109/TMM.2020.2985526.
[5] SHE Dongyu,LAI Yukun,YI Gaoxiong,et al.Hierarchical layout-aware graph convolutional network for unified aesthetics assessment[C]//Computer Vision and Pattern Recognition.Nashville:IEEE Press,2021:8471-8480.DOI:10.1109/CVPR46437.2021.00837.
[6] MARTIN-RODRIGUEZ F,GARCIA-MOJON R,FERNANDEZ-BARCIELA M.Detection of AI-created images using pixel-wise feature extraction and convolutional neural networks[J].Sensors,2023,23(22):9037.DOI:10.3390/s23229037.
[7] HE Shuai,XIAO Yi,MING Anlong,et al.Prompt-guided image color aesthetics assessment: Models, datasets and benchmarks[J].Information Fusion,2025,114:102706.DOI:10.1016/j.inffus.2024.102706.
[8] 梁艳,何畏,唐茂林.桥梁美学2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增刊1):234-241.DOI:10.11835/j.issn.2096-6717.2021.226.
[9] 李素梅,常永莉,段志成.基于卷积神经网络的立体图像舒适度客观评价[J].光学学报,2018,38(6):138-144.DOI:10.3788/AOS201838.0610003.
[10] 王伟凝,刘剑聪,徐向民,等.基于构图规则的图像美学优化[J].华南理工大学学报(自然科学版),2015,43(5):51-58.DOI:10.3969/j.issn.1000-565X.2015.05.009.
[11] 王欣,穆绍硕,陈华锋.基于多尺度特征提取网络的图像美学量化评分方法[J].浙江大学学报(理学版),2021,48(1):69-73.DOI:10.3785/j.issn.1008-9497.2021.01.010.
[12] DAICHI S,HIRONORI T,AKIHIRO K.Study on relationship between composition and prediction of photo aesthetics using CNN[J].Cogent Engineering,2022,9(1):2107472.DOI:10.1080/23311916.2022.2107472.
[13] LUO Xiaoyu,WU Yue,CHEN Airong,et al.Form finding and aesthetic design for pylons of cable-supported bridges[J].Structural Engineering International,2021,31(6):468-476.DOI:10.1080/10168664.2020.1870056.
[14] WONG LAIKUAN,LOW K.Saliency-enhanced image aesthetics class prediction[C]//IEEE International Conference on Image Processing.Cairo:IEEE Press,2009:993-996.DOI:10.1109/ICIP.2009.5413825.
[15] DATTA R,JOSHI D,LI Jia,et al.Studying aesthetics in photographic images using a computational approach[C]//9th European Conference on Computer Vision.Graz:Springer-Verlag,2006:288-301.DOI:10.1007/1174407 8_23.
[16] HOU Le,YU Chenping,SAMARAS D.Squared earth mover’s distance-based loss for training deep neural networks[EB/OL].(2016-11-17)[2024-10-10] .https://arxiv.org/abs/1611.05916.
[17] 牛顿,林宁,林振超,等.多特征融合的焊缝图像多标签分类算法[J].华侨大学学报(自然科学版),2024,45(4):514-523.DOI:10.11830/ISSN.1000-5013.202403033.
相似文献/References:
[1]吴琼,陈锻生.多尺度卷积循环神经网络的情感分类技术[J].华侨大学学报(自然科学版),2017,38(6):875.[doi:10.11830/ISSN.1000-5013.201606077]
WU Qiong,CHEN Duansheng.Sentiment Classification With Multiscale Convolutional Recurrent Neural Network[J].Journal of Huaqiao University(Natural Science),2017,38(2):875.[doi:10.11830/ISSN.1000-5013.201606077]
[2]邹辉,杜吉祥,翟传敏,等.深度学习与一致性表示空间学习的跨媒体检索[J].华侨大学学报(自然科学版),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
ZOU Hui,DU Jixiang,ZHAI Chuanmin,et al.Cross-Modal Multimedia Retrieval Based Deep Learning and Shared Representation Space Learning[J].Journal of Huaqiao University(Natural Science),2018,39(2):127.[doi:10.11830/ISSN.1000-5013.201508047]
[3]王改华,李涛,吕朦,等.采用无监督学习算法与卷积的图像分类模型[J].华侨大学学报(自然科学版),2018,39(1):146.[doi:10.11830/ISSN.1000-5013.201703109]
WANG Gaihua,LI Tao,Lü Meng,et al.Image Classification Model Using Unsupervised Learning Algorithm and Convolution[J].Journal of Huaqiao University(Natural Science),2018,39(2):146.[doi:10.11830/ISSN.1000-5013.201703109]
[4]郑凌云,柳培忠,汪鸿翔.结合高斯核函数的卷积神经网络跟踪算法[J].华侨大学学报(自然科学版),2018,39(5):762.[doi:10.11830/ISSN.1000-5013.201702123]
ZHENG Lingyun,LIU Peizhong,WANG Hongxiang.Convolution Neural Networks Tracking Algorithm Combined With Gaussian Kernel Function[J].Journal of Huaqiao University(Natural Science),2018,39(2):762.[doi:10.11830/ISSN.1000-5013.201702123]
[5]聂一亮,杜吉祥,杨麟.卷积特征图融合与显著性检测的图像检索[J].华侨大学学报(自然科学版),2018,39(6):937.[doi:10.11830/ISSN.1000-5013.201706028]
NIE Yiliang,DU Jixiang,YANG Lin.Image Retrieval Based on Convolution Feature Map Fusion and Saliency Detection[J].Journal of Huaqiao University(Natural Science),2018,39(2):937.[doi:10.11830/ISSN.1000-5013.201706028]
[6]刘群,陈锻生.采用ACGAN及多特征融合的高光谱遥感图像分类[J].华侨大学学报(自然科学版),2019,40(1):113.[doi:10.11830/ISSN.1000-5013.201710006]
LIU Qun,CHEN Duansheng.Classification of Hyperspectral Remote Sensing Images Using ACGAN and Fusion of Multifeature[J].Journal of Huaqiao University(Natural Science),2019,40(2):113.[doi:10.11830/ISSN.1000-5013.201710006]
[7]张圣祥,郑力新,朱建清,等.采用深度学习的快速超分辨率图像重建方法[J].华侨大学学报(自然科学版),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
ZHANG Shengxiang,ZHENG Lixin,ZHU Jianqing,et al.Fast Super-Resolution Image Reconstruction Method Using Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
[8]吴晨茜,陈锻生.表情符向量化算法[J].华侨大学学报(自然科学版),2019,40(3):399.[doi:10.11830/ISSN.1000-5013.201803011]
WU Chenxi,CHEN Duansheng.Emoticon Vectorization Algrorithm[J].Journal of Huaqiao University(Natural Science),2019,40(2):399.[doi:10.11830/ISSN.1000-5013.201803011]
[9]邱德府,郑力新,谢炜芳,等.深度学习下的高效单幅图像超分辨率重建方法[J].华侨大学学报(自然科学版),2019,40(5):668.[doi:10.11830/ISSN.1000-5013.201905029]
QIU Defu,ZHENG Lixin,XIE Weifang,et al.Efficient Single Image Super-Resolution Reconstruction Method Under Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(2):668.[doi:10.11830/ISSN.1000-5013.201905029]
[10]陈剑涛,黄德天,陈健,等.改进的二阶龙格-库塔超分辨率算法[J].华侨大学学报(自然科学版),2022,43(1):127.[doi:10.11830/ISSN.1000-5013.202012009]
CHEN Jiantao,HUANG Detian,CHEN Jian,et al.Improved Second-Order Runge-Kutta Super-Resolution Algorithm[J].Journal of Huaqiao University(Natural Science),2022,43(2):127.[doi:10.11830/ISSN.1000-5013.202012009]