参考文献/References:
[1] FRATERNALI P,MORANDINI L,GONZáLEZ S L H.Solid waste detection, monitoring and mapping in remote sensing images: A survey[J].Waste Management,2024,189:88-102.DOI:10.1016/j.wasman.2024.08.003.
[2] BONIFAZI G,SERRANTI S.Recycling technologies[C]//Encyclopedia of Sustainability Science and Technology.New York: Springer,2019:1-57.DOI:10.1007/978-1-4939-2493-6_116-4.
[3] JANK A,MüLLER W,SCHNEIDER I,et al.Waste separation press: A mechanical pretreatment option for organic waste from source separation[J].Waste Management,2015,39:71-77.DOI:10.1016/j.wasman.2015.02.024.
[4] ROSS T Y,DOLLáR G.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway: IEEE Press,2017:2980-2988.DOI:10.1109/ICCV.2017.324.
[5] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press,2017:2117-2125.DOI:10.1109/CVPR.2017.106.
[6] WANG C Y,YEH I H,LIAO H Y M.Yolov9: Learning what you want to learn using programmable gradient information[C]//European Conference on Computer Vision.Cham:Springer,2025:1-21.DOI:10.1007/978-3-031-72751-1_1.
[7] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press,2023:7464-7475.
[8] KIRILLOV A,MINTUN E,RAVI N,et al.Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE Press,2023:4015-4026.DOI:10.48550/arXiv.2304.02643.
[9] ZONG Zhuofan,SONG Guanglu,LIN Yu.Detrs with collaborative hybrid assignments training[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Piscataway: IEEE Press,2023:6748-6758.DOI:10.48550/arXiv.2211.12860.
[10] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press,2015:3431-3440.DOI:10.1109/TPAMI.2016.2572683.
[11] 郑龙海,袁祖强,殷晨波,等.基于机器视觉的建筑垃圾自动分类系统研究[J].机械工程与自动化,2019(6):16-18.DOI:10.3969/j.issn.1672-6413.2019.06.006.
[12] XU Xiong,ZHAO Beibei,TONG Xiaohua,et al.A data augmentation strategy combining a modified pix2pix model and the copy-paste operator for solid waste detection with remote sensing images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:8484-8491.DOI:10.1109/JSTARS.2022.3209967.
[13] DAVIS P,AZIZ F,NEWAZ M T,et al.The classification of construction waste material using a deep convolutional neural network[J].Automation in Construction,2021,122:103481.DOI:10.1016/j.autcon.2020.103481.
[14] LI Pan,XU Jiayin,LIU Shenbo.Solid waste detection using enhanced YOLOv8 lightweight convolutional neural networks[J].Mathematics,2024,12(14):2185.DOI:10.3390/math12142185.
[15] LU Weisheng,CHEN Junjie,XUE Fan.Using computer vision to recognize composition of construction waste mixtures: A semantic segmentation approach[J].Resources, Conservation and Recycling,2022,178:106022.DOI:10.1016/j.resconrec.2021.106022.
[16] DENG Fuqin,FENG Hua,LIANG Mingjian,et al.FEANet: Feature-enhanced attention network for RGB-thermal real-time semantic segmentation[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway: IEEE Press,2021:4467-4473.DOI:10.1109/IROS51168.2021.9636084.
[17] XIAO Wen,YANG Jianhong,FANG Huaiying,et al.A robust classification algorithm for separation of construction waste using NIR hyperspectral system[J].Waste Management,2019,90:1-9.DOI:10.1016/j.wasman.2019.04.036.
[18] LU Bing,DAO P D,LIU Jianggui,et al.Recent advances of hyperspectral imaging technology and applications in agriculture[J].Remote Sensing,2020,12(16):2659.DOI:10.3390/rs12162659.
[19] LI Jiantao,FANG Huaiying,FAN Lulu,et al.RGB-D fusion models for construction and demolition waste detection[J].Waste Management,2022,139:96-104.DOI:10.1016/j.wasman.2021.12.021.
[20] CAI Zhenxing,FANG Huaiying,JIANG Fengfeng,et al.AMFFNet: Asymmetric multi-scale feature fusion network of RGB-NIR for solid waste detection[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-10.DOI:10.1109/TIM.2023.3300445.
[21] LI Yangke,ZHANG Xinman.Multi-scale context fusion network for urban solid waste detection in remote sensing images[J].Remote Sensing,2024,16(19):3595.DOI:10.3390/rs16193595.
[22] ZHUANG Jiangteng,FANG Huaiying,XIAO Wen,et al.Recognition of concrete and gray brick based on color and texture features[J].Journal of Testing and Evaluation,2019,47(4):3224-3237.DOI:10.1520/JTE20180523.
[23] HU Xinxin,YANG Kailun,FEI Lei,et al.Acnet: Attention based network to exploit complementary features for rgbd semantic segmentation[C]//IEEE International Conference on Image Processing.Piscataway: IEEE Press,2019:1440-1444.DOI:10.1109/ICIP.2019.8803025.
[24] HE Kaiming,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Xision.Piscataway: IEEE Press,2017:2961-2969.DOI:10.1109/ICCV.2017.322.
[25] HU Jie,SHEN Li,SUN Gang.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press,2018:7132-7141.DOI:10.1109/CVPR.2018.00745.
[26] HOU Qibin,ZHOU Daquan,FENG Jiashi.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press,2021:13713-13722.DOI:10.1109/CVPR46437.2021.01350.
[27] MA Wanqi,CHEN Hong,ZHANG Wenkang,et al.DSYOLO-trash: An attention mechanism-integrated and object tracking algorithm for solid waste detection[J].Waste Management,2024,178:46-56.DOI:10.1016/j.wasman.2024.02.014.
[28] XIE S,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press,2017:1492-1500.DOI:10.1109/CVPR.2017.634.