[1]朱亚玲,方杉杉,黎祎杰,等.肝细胞癌铁死亡特征基因的ceRNA调控网络构建及分析[J].华侨大学学报(自然科学版),2024,45(6):746-755.[doi:10.11830/ISSN.1000-5013.202401010]
 ZHU Yaling,FANG Shanshan,LI Yijie,et al.Construction and Analysis of ceRNA Regulatory Network of Ferroptosis Feature Genes in Hepatocellular Carcinoma[J].Journal of Huaqiao University(Natural Science),2024,45(6):746-755.[doi:10.11830/ISSN.1000-5013.202401010]
点击复制

肝细胞癌铁死亡特征基因的ceRNA调控网络构建及分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第6期
页码:
746-755
栏目:
出版日期:
2024-11-15

文章信息/Info

Title:
Construction and Analysis of ceRNA Regulatory Network of Ferroptosis Feature Genes in Hepatocellular Carcinoma
文章编号:
1000-5013(2024)06-0746-10
作者:
朱亚玲 方杉杉 黎祎杰 徐先祥 刁勇
华侨大学 医学院, 福建 泉州 362021
Author(s):
ZHU Yaling FANG Shanshan LI Yijie XU Xianxiang DIAO Yong
School of Medicine, Huaqiao University, Quanzhou 362021, China
关键词:
肝细胞癌 铁死亡 ceRNA 预后 免疫细胞浸润
Keywords:
hepatocellular carcinoma ferroptosis ceRNA prognosis immune cell infiltration
分类号:
R735.7
DOI:
10.11830/ISSN.1000-5013.202401010
文献标志码:
A
摘要:
通过构建肝细胞癌(HCC)铁死亡特征基因的ceRNA调控网络,探讨特征基因在HCC中的预后价值。筛选差异表达铁死亡相关基因(DE-FRGs),构建DE-FRGs的预后风险模型。采用生存分析、独立预后分析、ROC曲线及C指数分析评价模型的准确性。比较高、低风险组间免疫细胞浸润、肿瘤微环境及免疫治疗反应的差异。构建并分析铁死亡特征基因的ceRNA调控网络。结果表明:高风险组HCC患者总生存期和无进展生存期显著低于低风险组;风险评分和肿瘤分期为HCC患者的独立预后因素;与其他临床特征相比,预后风险模型具有更好的预测能力;高、低风险组HCC患者在免疫细胞浸润、肿瘤微环境及免疫治疗反应等方面的差异具有统计学意义;ceRNA调控网络中,SLC7A11的高表达与HCC患者预后不良密切相关。
Abstract:
By constructing a ceRNA regulatory network of ferroptosis feature genes in hepatocellular carcinoma(HCC), the prognostic value of feature genes in HCC was explored. The differential expression of ferroptosis-related genes(DE-FRGs)was screened and a prognostic risk model of DE-FRGs was constructed. The accuracy of the model was evaluated using survival analysis, independent prognostic analysis, ROC curve and C index analysis. The differences of immune cell infiltration, tumor microenvironment and immunotherapy response were compared between high-risk and low-risk groups. The ceRNA regulatory network of ferroptosis feature genes was constructed and analyzed. The results showed that the overall survival and progression free survival of HCC patients in the high-risk group were significantly lower than those of the low-risk group. Risk score and tumor stage were independent prognostic factors for HCC patients. Compared with other clinical features, prognostic risk model had better predictive power. There were significant differences in immune cell infiltration, tumor microenvironment and immunotherapy response between high-risk and low-risk groups. High expression of SLC7A11 in the ceRNA network was closely associated with poor prognosis in HCC patients.

参考文献/References:

[1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA: A Cancer Journal for Clinicians,2021,71(3):209-249.DOI:10.3322/caac.21660.
[2] GANESAN P,KULIK L M.Hepatocellular carcinoma[J].Clinics in Liver Disease,2023,27(1):85-102.DOI:10.1016/j.cld.2022.08.004.
[3] VOGEL A,MEYER T,SAPISOCHIN G,et al.Hepatocellular carcinoma[J].Lancet,2022,400(10360):1345-1362.DOI:10.1016/S0140-6736(22)01200-4.
[4] AMIN M B,GREENE F L,EDGE S B,et al.The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more ″personalized″ approach to cancer staging[J].CA: A Cancer Journal for Clinicians,2017,67(2):93-99.DOI:10.3322/caac.21388.
[5] REIG M,FORNER A,RIMOLA J,et al.BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update[J].Journal of Hepatology,2022,76(3):681-693.DOI:10.1016/j.jhep.2021.11.018.
[6] AJOOLABADY A,TANG D,KROEMER G,et al.Ferroptosis in hepatocellular carcinoma: Mechanisms and targeted therapy[J].British Journal of Cancer,2023,128(2):190-205.DOI:10.1038/s41416-022-01998-x.
[7] HUANG Ziyue,XIA Haoming,CUI Yunfu,et al.Ferroptosis: From basic research to clinical therapeutics in hepatocellular carcinoma[J].Journal of Clinical and Translational Hepatology,2023,11(1):207-218.DOI:10.14218/JCTH.2022.00255.
[8] TANG Daolin,KROEMER G,KANG Rui.Ferroptosis in hepatocellular carcinoma: From bench to bedside[J].Hepatology,2023,11(1):207-218.DOI:10.1097/HEP.0000000000000390.
[9] YANG Fan,XIAO Yi,DING Jiahan,et al.Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J].Cell Metabolism,2023,35(1):84-100.DOI:10.1016/j.cmet.2022.09.021.
[10] CHENG Zhe,CHEN Yongheng,HUANG Huichao.Identification and validation of a novel prognostic signature based on ferroptosis-related genes in ovarian cancer[J].Vaccines,2023,11(2):205-225.DOI:10.3390/vaccines11020205.
[11] YUAN Hua,LI Xuemei,ZHANG Xiuying,et al.CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J].Biochemical and Biophysical Research Communications,2016,478(2):838-844.DOI:10.1016/j.bbrc.2016.08.034.
[12] JENNIS M,KUNG C P,BASU S,et al.An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model[J].Genes & Development,2016,30(8):918-930.DOI:10.1101/gad.275891.115.
[13] CHANG K,CHEN Y,ZHANG X,et al.DPP9 Stabilizes NRF2 to suppress ferroptosis and induce sorafenib resistance in clear cell renal cell carcinoma[J].Cancer Research,2023,83(23):3940-3955.DOI:10.1158/0008-5472.
[14] CAI Mengxing,LUO Jingwen,YANG Chunxiu,et al.ABHD12 contributes to tumorigenesis and sorafenib resistance by preventing ferroptosis in hepatocellular carcinoma[J].iScience,2023,26(12):108340-108358.DOI:10.1016/j.isci.2023.108340.
[15] SUN Xiaofang,NIU Xiaohua,CHEN Ruochan,et al.Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis[J].Hepatology,2016,64(2):488-500.DOI:10.1002/hep.28574.
[16] THOMSON D W,DINGER M E.Endogenous microRNA sponges: Evidence and controversy[J].Nature Reviews Genetics,2016,17(5):272-283.DOI:10.1038/nrg.2016.20.
[17] SHI Yi,LIU Jibin,DENG Jing,et al.The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma[J].Hereditas,2021,158(1):44-58.DOI:10.1186/s41065-021-00208-7.
[18] ZHANG Ying,LUO Meiying,CUI Xiaohong,et al.Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA[J].Cell Death and Differentiation,2022,29(9):1850-1863.DOI:10.1038/s41418-022-00970-9.
[19] YANG Zelong,HE Kun,CHEN Weigang,et al.A ferroptosis-related ceRNA network in hepatocellular carcinoma for potential clinical applications[J].American Journal of Translational Research,2023,15(6):3912-3927.
[20] CHEN Xin,LI Jingbo,KANG Rui,et al.Ferroptosis: Machinery and regulation[J].Autophagy,2021,17(9):2054-2081.DOI:10.1080/15548627.2020.1810918.
[21] TANG Daolin,CHEN Xin,KANG Rui,et al.Ferroptosis: Molecular mechanisms and health implications[J].Cell Research,2021,31(2):107-125.DOI:10.1038/s41422-020-00441-1.
[22] LIU Jiankun,LIU Zhiyong,LI Wei,et al.SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells[J].Oncology Letters,2021,21(5):399-409.DOI:10.3892/ol.2021.12660.
[23] CHEN Qianping,ZHENG Wang,GUAN Jian,et al.SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma[J].Cell Death & Differentiation,2022,30(1):137-151.DOI:10.1038/s41418-022-01051-7.
[24] AU S L K,WONG C C L,LEE J M F,et al.Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis[J].Hepatology,2012,56(2):622-631.DOI:10.1002/hep.25679.
[25] WANG Bohan,LIU Yachong,LIAO Zhibin,et al.EZH2 in hepatocellular carcinoma: Progression, immunity, and potential targeting therapies[J].Experimental Hematology & Oncology,2023,12(1):52-65.DOI:10.1186/s40164-023-00405-2.
[26] SHIN C S,MISHRA P,WATROUS J D,et al.The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility[J].Nature Communications,2017,21(8):15074-15085.DOI:10.1038/ncomms15074.
[27] HE Feng,ZHANG Peng,LIU Junlai,et al.ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11(xCT)to block stress-related ferroptosis[J].Journal of Hepatology,2023,79(2):362-377.DOI:10.1016/j.jhep.2023.03.016.
[28] Lü Ning,ZENG Yan,KONG Yanan,et al.Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis[J].Annals of Translational Medicine,2021,9(8):675-686.DOI:10.21037/atm-21-997.
[29] DIMRI M,HUMPHRIES A,LAKNAUR A,et al.NAD(P)H quinone dehydrogenase 1 ablation inhibits activation of the phosphoinositide 3-kinase/Akt serine/threonine kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways and blocks metabolic adaptation in hepatocellular carcinoma[J].Hepatology,2020,71(2):549-568.DOI:10.1002/hep.30818.
[30] QIN Xianyang,SU Ting,YU Wenkui,et al.Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells[J].Cell Death & Disease,2020,11(1):66-79.DOI:10.1038/s41419-020-2257-y.
[31] YASUKAWA K,LIEW L C,HAGIWARA K,et al.MicroRNA-493-5p-mediated repression of the MYCN oncogene inhibits hepatic cancer cell growth and invasion[J].Cancer Science,2020,111(3):869-880.DOI:10.1111/cas.14292.
[32] LIU Chunjiang,TANG Liming,XU Miaojun,et al.LncRNA RUSC1-AS1 contributes to the progression of hepatocellular carcinoma cells by modulating miR-340-5p/CREB1 axis[J].American Journal of Translational Research,2021,13(3):1022-1036.
[33] LI Zhixi,WU Gang,LI Jie,et al.lncRNA CRNDE promotes the proliferation and metastasis by acting as sponge miR-539-5p to regulate POU2F1 expression in HCC[J].BMC Cancer,2020,20(1):282-293.DOI:10.1186/s12885-020-06771-y.
[34] WEI Huamei,XU Zuoming,CHEN Liucui,et al.Long non-coding RNA PAARH promotes hepatocellular carcinoma progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling[J].Cell Death and Disease,2022,13(2):102-115.DOI:10.1038/s41419-022-04505-5.

备注/Memo

备注/Memo:
收稿日期: 2024-01-10
通信作者: 刁勇(1967-),男,教授,博士,博士生导师,主要从事基因治疗药物的研究。E-mail:diaoyong@hqu.edu.cn。
基金项目: 福建省泉州市高层次人才项目(2022C006R)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2024-11-20