[1]陈明霞,邢元军,李和阳,等.产灵菌红素沙雷氏菌R18的鉴定及基因组特性[J].华侨大学学报(自然科学版),2024,45(5):626-635.[doi:10.11830/ISSN.1000-5013.202311032]
 CHEN Mingxia,XING Yuanjun,LI Heyang,et al.Identification and Genomic Characterization of Prodigiosin-Producing Serratia sp. R18[J].Journal of Huaqiao University(Natural Science),2024,45(5):626-635.[doi:10.11830/ISSN.1000-5013.202311032]
点击复制

产灵菌红素沙雷氏菌R18的鉴定及基因组特性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第5期
页码:
626-635
栏目:
出版日期:
2024-09-20

文章信息/Info

Title:
Identification and Genomic Characterization of Prodigiosin-Producing Serratia sp. R18
文章编号:
1000-5013(2024)05-0626-10
作者:
陈明霞1 邢元军1 李和阳23 施俊豪1
1. 华侨大学 化工学院, 福建 厦门 361021;2. 自然资源部 第三海洋研究所, 福建 厦门 361005;3. 第三海洋研究所 福建省海洋生态保护与修复重点实验室, 福建 厦门 361005
Author(s):
CHEN Mingxia1 XING Yuanjun1 LI Heyang23 SHI Junhao1
1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; 2. Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; 3. Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Xiamen 361005, China
关键词:
粘质沙雷氏菌 灵菌红素 菌种鉴定 基因组特性
Keywords:
Serratia marcescens prodigiosin bacterial identification genomic characterization
分类号:
Q939.1
DOI:
10.11830/ISSN.1000-5013.202311032
文献标志码:
A
摘要:
采用形态学、生理生化和分子生物学方法对菌株R18进行菌种鉴定。通过基因组测序和生物信息学比较,进一步分析其分类地位和生物学特性,并在基因组水平上探讨该菌株红色素的合成基因簇和代谢路径。结果表明:菌株R18最佳生长条件为温度30~37 ℃,pH值6~8,NaCl质量浓度0~10 g·L-1;菌株R18与粘质沙雷氏菌模式菌株ATCC 13880的16S rDNA相似度为99.86%,基因组平均核苷酸均一性和数字DNA-DNA杂交值分别为98.73%,89.5%,均高于物种界定阈值,属于同一个物种;菌株R18灵菌红素合成基因簇全长35 021 bp,包含29个基因,其中,4个核心合成基因、10个补充的合成基因、1个调控基因、1个转运基因及13个其他基因,具有完整的灵菌红素合成代谢途径。
Abstract:
Strain R18 was identified using morphological, physiological, biochemical and molecular biological methods. Its taxonomic status and biological properties were further analyzed by comparing genome sequencing and bioinformatics, and the synthetic gene cluster and metabolic pathway of the red pigment in this strain were explored at the genomic level. The results showed that the optimal growth conditions for strain R18 were temperature of 30-37 ℃, pH value of 6-8, and the mass concentration of NaCl of 0-10 g·L-1. Strain R18 shared a 16S rDNA similarity of 99.86% to Serratia marcescens type strain ATCC 13880, the genome average nucleotide identity value and the digital DNA-DNA hybridization value were 98.73% and 89.5%, respectively, both of which were higher than the species identification threshold and belong to the same specie. Strain R18 prodigiosin synthetic gene cluster had a total length of 35 021 bp and contained 29 genes including 4 core syn-thetic genes, 10 complementary synthetic genes, 1 regulatory gene, 1 transporter gene and 13 other genes, it had a complete prodigiosin synthesis metabolic pathway.

参考文献/References:

[1] GRIMONT F,GRIMONT P A D,GENUS X X X I V.Bergey’s manual of systematic bacteriology[M].2nd ed.Berlin:Springer,2005.
[2] ARAúJO R G,ZAVALA N R,CASTILLO-ZACARíAS C,et al.Recent advances in prodigiosin as a bioactive compound in nanocomposite applications[J].Molecules,2022,27(15):4982.DOI:10.3390/molecules27154982.
[3] ESPONA-FIEDLER M,MANUEL-MANRESA P,BENíTEZ-GARCíA C,et al.Antimetastatic properties of prodigiosin and the BH3-mimetic obatoclax(GX15-070)in melanoma[J].Pharmaceutics,2022,15(1):97.DOI:10.3390/pharmaceutics15010097.
[4] CHEN P,WU H,BIAN T,et al.Prodigiosin improves acute lung injury in a rat model of rheumatoid arthritis via down-regulating the nuclear factor kappaB/nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 signaling pathway[J].Journal of Physiology and Pharmacology,2023,74(1):43-54.DOI:10.26402/jpp.2023.1.05.
[5] YOUNAS H,NAZIR A,BAREEN F E,et al.Metabolic profile and molecular characterization of endophytic bacteria isolated from Pinus sylvestris L.with growth-promoting effect on sunf-lower[J].Environmental Science and Pollution Research,2023,30(14):40147-40161.DOI:10.1007/s11356-022-25118-7.
[6] 中国轻工业联合会,中国生物发酵产业协会.第一届菌种培养职业技能竞赛暨第七届微生物培养皿艺术大赛[EB/OL].(2023-07-05)[2023-11-20] .https://vote.isv.youzan.com/h5?banner_id=f.110709144~image_ad.5~0~30rBitpJ&reft=1697538254536&spm=f.110709144#/h5/1681269487132774/1/122509290/0.
[7] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
[8] DELONG E F.Archaea in coastal marine environments[J].Proceedings of the National Academy of Sciences of the United States of America,1992,89(12):5685-5689.DOI:10.1073/pna.89.12.5685.
[9] KIM O S,CHO Y J,LEE K,et al.Introducing EzTaxone: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J].International Journal of Systematic and Evolutionary Microbiology,2012,62(Pt3):716-721.DOI:10.1099/ij.0.038075-0.
[10] KUMAR S,STECHER G,TAMURA K.MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J].Molecular Biology and Evolution,2016,33(7):1870-1874.DOI:10.1093/molbev/msw054%20.
[11] CHEN Shifu,ZHOU Yanqing,CHEN Yaru,et al.fastp: An ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.DOI:10.1093/bioinformatics/bty560.
[12] BOLGER A M,LOHSE M,USADEL B.Trimmomatic: A flexible trimmer for Illumina sequence data[J].Bioinformatics,2014,30(15):2114-2120.DOI:10.1093/bioinformatics/btu170.
[13] BANKEVICH A,NURK S,ANTIPOV D,et al.SPAdes: A new genome assembly algorithm and its applications to single cell sequencing[J].Journal of Computational Biology,2012,19(5):455-477.DOI:10.1089/cmb.2012.0021.
[14] GUREVICH A,SAVELIEV V,VYAHHI N,et al.QUAST: Quality assessment tool for genome assemblies[J].Bioinformatics,2013,29(8):1072-1075.DOI:10.1093/bioinformatics/btt086.
[15] BESEMER J,LOMSADZE A,BORODOVSKY M.GeneMarkS: A self-training method for prediction of gene starts in microbial genome: Implications for finding sequence motifs in regulatory regions[J].Nucleic Acids Research,2001,29(12):2607-2618.DOI:10.1093/nar/29.12.2607.
[16] LOWE T M,EDDY S R.tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence[J].Nucleic Acids Research,1997,25(5):955-964.DOI:10.1093/nar/25.5.955.
[17] LAGESEN K,HALLIN P,R?DLAND E A,et al.RNAmmer: Consistent and rapid annotation of ribosomal RNA genes[J].Nucleic Acids Research,2007,35(9):3100-3108.DOI:10.1093/nar/gkm160.
[18] GARDNER P P,DAUB J,TATE J G,et al.Rfam: Updates to the RNA families database[J].Nucleic Acids Research,2009,37(Database issue):D136-D140.DOI:10.1093/nar/gkn766.
[19] ASHBURNER M,BALL C A,BLAKE J A,et al.Gene ontology: Tool for the unification of biology[J].Nature Genetics,2000,25(1):25-29.DOI:10.1038/75556.
[20] KANEHISA M,GOTO S,KAWASHIMA S,et al.The KEGG resource for deciphering the genome[J].Nucleic Acids Research,2004,32(Database issue):D277-D280.DOI:10.1093/nar/gkh063.
[21] KANEHISA M,GOTO S,HATTORI M,et al.From genomics to chemical genomics: New developments in KEGG[J].Nucleic Acids Research,2006,34(Database issue):D354-D357.DOI:10.1093/nar/gkj102.
[22] TATUSOV R L,FEDOROVA N D,JACKSON J D,et al.The COG database: An updated version includes eukaryotes[J].BMC Bioinformatics,2003,4(1):41.DOI:10.1186/1471-2105-4-41.
[23] LI Weizhong,JAROSZEWSKI L,GODZIK A.Tolerating some redundancy significantly speeds up clustering of largeprotein databases[J].Bioinformatics,2002,18(1):77-82.DOI:10.1093/bioinformatics/18.1.77.
[24] CANTAREL B L,COUTINHO P M,RANCUREL C,et al.The carbohydrate-active EnZymes database(CAZy): An expert resource for glycogenomics[J].Nucleic Acids Research,2009,37(Database issue):D233-D238.DOI:10.1093/nar/gkn663.
[25] YOON S H,HA S M,LIM J,et al.A large-scale evaluation of algorithms to calculate average nucleotide identity[J].Antonie van Leeuwenhoek,2017,110(10):1281-1286.DOI:10.1007/s10482-017-0844-4.
[26] MEIER-KOLTHOFF J P,SARDà C J,PEINADO-OLARTE R L,et al.TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes[J].Nucleic Acids Research,2022,50(Database issue):D801-D807.DOI:10.1093/nar/gkab902.
[27] BLIN K,SHAW S,AUGUSTIJN H E,et al.AntiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation[J].Nucleic Acids Research,2023,51(W1):W46-W50.DOI:10.1093/nar/gkad344.
[28] KIM M,OH H S,PARK S C,et al.Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J].International Journal of Systematic and Evolutionary Microbiology,2014,64(Pt2):346-351.DOI:10.1099/ij.0.059774-0.
[29] CHUN J,OREN A,VENTOSA A,et al.Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes[J].International Journal of Systematic and Evolutionary Microbiology,2018,68(1):461-466.DOI:10.1099/ijsem.0.002516.
[30] RICHTER M,ROSSELLó-MóRA R.Shifting the genomic gold standard for the prokaryotic speciesdefinition[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(45):19126-19131.DOI:10.1073/pna.0906412106.
[31] MEIER-KOLTHOF J P,AUCH A F,KLENK H P,et al.Genome sequence-based species delimitation with confidence intervals and improved distance functions[J].BMC Bioinformatics,2013,14:60.DOI:10.1186/1471-2105-14-60.
[32] MEIER-KOLTHOFF J P,HAHNKE R L,PETERSEN J,et al.Complete genome sequence of DSM 30083T, the type strain(U5/41T)of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy[J].Standards in Genomic Sciences,2014,9:2.DOI:10.1186/1944-3277-9-2.
[33] ZHANG Chongxing,YANG Shouyun,XU Mingxu,et al.Serratia nematodiphila sp. nov.associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis(Rhabditida: Rhabditidae)[J].International Journal of Systematic and Evolutionary Microbiology,2009,59(Pt7):1603-1608.DOI:10.1099/ij.0.65718-0.
[34] HARRIS A K P,WILLIAMSON N R,SLATER H,et al.The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species-and strain-dependent genome context variation[J].Microbiology,2004,150(Pt11):3547-3560.DOI:10.1099/mic.0.27222-0.
[35] LI Peishan,HE Shufen,ZHANG Xuejiao,et al.Structures, biosynthesis, and bioactivities of prodiginine natural products[J].Applied Microbiology Biotechnology,2022,106(23):7721-7735.DOI:10.1007/s00253-022-12245-x.

相似文献/References:

[1]刘治江,贺淹才,李红然,等.采用易错PCR对粘质沙雷氏菌几丁质酶C进行定向进化[J].华侨大学学报(自然科学版),2010,31(1):58.[doi:10.11830/ISSN.1000-5013.2010.01.0058]
 LIU Zhi-jiang,HE Yan-cai,LI Hong-ran,et al.Directed Evolution of Chitinase C from Serratia marcescens by Error-Prone PCR[J].Journal of Huaqiao University(Natural Science),2010,31(5):58.[doi:10.11830/ISSN.1000-5013.2010.01.0058]
[2]刘嘉,贺淹才,施腾鑫,等.重组粘质沙雷氏菌几丁质酶C的纯化及酶学性质[J].华侨大学学报(自然科学版),2010,31(5):552.[doi:10.11830/ISSN.1000-5013.2010.05.0552]
 LIU Jia,HE Yan-cai,SHI Teng-xin,et al.Purification and Enzyme Properties of Recombinant Serratia marcescens Chitinase C[J].Journal of Huaqiao University(Natural Science),2010,31(5):552.[doi:10.11830/ISSN.1000-5013.2010.05.0552]

备注/Memo

备注/Memo:
收稿日期: 2023-11-29
通信作者: 李和阳(1978-),男,副研究员,博士,主要从事海洋微生物生态的研究。E-mail:heyang_li@tio.org.cn。
基金项目: 福建省海洋经济发展专项资金资助项目(FJHJF-L-2022-11); 华侨大学2023年实验教学与管理改革课题(SY2023J05); 福建省海洋生态保护与修复重点实验室开放基金资助项目(EPR2020002)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2024-09-20