[1]解一诺,李逸鑫,王远鹏.微生物-电极修饰及影响电合成转化CO2过程的研究进展[J].华侨大学学报(自然科学版),2024,45(5):559-574.[doi:10.11830/ISSN.1000-5013.202407014]
 XIE Yinuo,LI Yixin,WANG Yuanpeng.Advances in Microbial-Electrode Modification and Influence on Process of Electrosynthesis to Convert CO2[J].Journal of Huaqiao University(Natural Science),2024,45(5):559-574.[doi:10.11830/ISSN.1000-5013.202407014]
点击复制

微生物-电极修饰及影响电合成转化CO2过程的研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第5期
页码:
559-574
栏目:
出版日期:
2024-09-20

文章信息/Info

Title:
Advances in Microbial-Electrode Modification and Influence on Process of Electrosynthesis to Convert CO2
文章编号:
1000-5013(2024)05-0559-16
作者:
解一诺1 李逸鑫12 王远鹏1
1. 厦门大学 化学化工学院, 福建 厦门 361005;2. 华侨大学 化工学院, 福建 厦门 361021
Author(s):
XIE Yinuo1 LI Yixin12 WANG Yuanpeng1
1. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; 2. College of Chemical Engineering, Huaqiao University, Xiamen 361005, China
关键词:
微生物电合成(MES) CO2转化 电极修饰 电活性微生物 胞外电子传递 纳米材料
Keywords:
microbial electrosynthesis(MES) CO2 conversion electrode modification electroactive microorganisms extracellular electron transfer nanomaterials
分类号:
Q939.9;X701
DOI:
10.11830/ISSN.1000-5013.202407014
文献标志码:
A
摘要:
微生物电合成(microbial electrosynthesis,MES)是一种利用电活性微生物摄取胞外电子,将CO2或有机废料转化为可再生化学品的技术。首先,文中阐述了电极的改性方式,碳基材料以其多样的形态、优异的化学稳定性和高比表面积等优点,在电极改性中发挥着重要作用, 其主要是通过提供更多的微生物附着点和增强电子传递效率改善MES;而非碳基材料如金属材料等,因其优异的导电性和催化活性,则被广泛用于提升电极性能,其作用机制在于加速电极上的催化反应和促进特定产品的生成。其次,从电活性微生物角度入手,揭示了在电极材料修饰和微生物细胞修饰上的共同点都是能够提高微生物的电子传递能力,不同点在于微生物细胞修饰可以直接作用于微生物的生理和遗传特性,以增强其电子传递能力和底物转化效率。此外,分析了纳米材料与高附加值产品之间的关系,认为合理选择和制备电极材料及微生物细胞修饰策略,对于提高MES系统的效率和产物选择性至关重要。最后,对MES技术面临的挑战和未来的研究方向进行了展望。
Abstract:
Microbial Electrosynthesis(MES)is a technology that uses electroactive microorganisms to take up extracellular electrons to convert CO2 or organic wastes into renewable chemicals. In this paper, the electrode modification approach is firstly described, and it is pointed out that carbon-based materials, with their diverse morphology, excellent chemical stability and high specific surface area, play an important role in electrode modification, and their mechanism of action is mainly through providing more microbial attachment points and enhancing the electron transfer efficiency. While non-carbon based materials, such as metallic materials, are widely used to enhance electrode performance due to their excellent electrical conductivity and catalytic activity, and their mechanism of action lies in accelerating the catalytic reaction on the electrode and promoting the generation of specific products. Secondly, from the perspective of electroactive microorganisms, the article reveals that the common point on the modification of electrode materials and microbial cell modification is to enhance the microbial electron transfer ability, and the difference is that the microbial cell modification can di-rectly act on the physiological and genetic characteristics of microorganisms in order to enhance the electron transfer ability and the efficiency of substrate conversion. In addition, the article analyses the relationship between nanomaterials and high value-added products, and concludes that the rational selection and design of electrode materials and microbial cell modification strategies are crucial for improving the efficiency and product selectivity of MES systems. Finally, it provides an outlook on the challenges and future research directions of MES technology.

参考文献/References:

[1] 董聪,董秀成,蒋庆哲,等.《巴黎协定》背景下中国碳排放情景预测: 基于BP神经网络模型 [J].生态经济,2018,34(2):18-23.
[2] INTERNATIONAL ENERGY AGENCY.CO2 emissions in 2023[R/OL].(2024-03-01)[2024-07-15] .https://www.iea.org/reports/co2-emissions-in-2023.
[3] 蔡韬,刘玉万,朱蕾蕾,等.二氧化碳人工生物转化[J].生物工程学报,2022,38(11):4101-4114.DOI: 10.13345/j.cjb.220889.
[4] CHOI O,SANG B I.Extracellular electron transfer from cathode to microbes:application for biofuel production[J].Biotechnology for Biofuels,2016,9(1):1-14.DOI:10.1186/s13068-016-0426-0.
[5] GAJDA I,YOU J,MENDIS B A,et al.Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells[J].iScience,2021,24(8):102805.DOI:10.1016/j.isci.2021.102805.
[6] WANG Ruiwen,LI Huidong,SUN Jinzhi,et al.Nanomaterials facilitating microbial extracellular electron transfer at interfaces[J].Advanced Materials,2021,33(6):2004051(1-19).DOI:10.1002/adma.202004051.
[7] 苏紫荆,刘远峰,孙亚昕,等.促进微生物胞外电子转移的纳米材料研究进展[J].精细化工,2023,40(4):791-801.DOI:10.13550/j.jxhg.20220599.
[8] BIAN Bin,BAJRACHARYA S,XU Jiajie,et al.Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy[J].Bioresource Technology,2020,302:122863(1-12).DOI:10.1016/j.biortech.2020.122863.
[9] CHRISTODOULOU X,OKOROAFOR T,PARRY S,et al.The use of carbon dioxide in microbial electrosynthesis:Advancements,sustainability and economic feasibility[J].Journal of CO2 Utilization,2017,18:390-399.DOI:10.1016/j.jcou.2017.01.027.
[10] MARSHALL C W,ROSS D E,FICHOT E B,et al.Electrosynthesis of commodity chemicals by an autotrophic microbial community[J].Applied and Environmental Microbiology,2012,78(23):8412-8420.DOI:10.1128/AEM.02401-12.
[11] LEKSHMI G S,BAZAKA K,RAMAKRISHNA S,et al.Microbial electrosynthesis: Carbonaceous electrode materials for CO2 conversion[J].Materials Horizons,2023,10(2):292-312.DOI:10.1039/D2MH01178F.
[12] HUI Su,JIANG Yujing,JIANG Yuanfan,et al.Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: Recent progress and perspectives[J].Energy Materials,2023,3(6):300055(1-31).DOI:10.20517/energymater.2023.60.
[13] NEVIN K P,WOODARD T L,FRANKS A E,et al.Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J].mBio,2010,1(2):e00103(1-10).DOI:10.1128/mBio.00103-10.
[14] BAJRACHARYA S,TER HEIJNE A,BENETTON X D,et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresource Technology,2015,195:14-24.DOI:10.1016/j.biortech.2015.05.081.
[15] ARYAL N,AMMAM F,PATIL S A,et al.An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide[J].Green Chemistry,2017,19(24):5748-5760.DOI:10.1039/c7gc01801k.
[16] GUO Kun,CHEN Xin,FREGUIA S,et al.Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems[J].Biosensors and Bioelectronics,2013,47:184-189.DOI:10.1016/j.bios.2013.02.051.
[17] POPOV A L,KIM J R,DINSDALE R M,et al.The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell[J].Biotechnology and Bioprocess Engineering,2012,17(2):361-70.DOI:10.1007/s12257-011-0493-9.
[18] JIANG Yong,LIANG Qinjun,CHU Na,et al.A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis[J].Science of The Total Environment,2020,741:140198(1-9).DOI:10.1016/j.scitotenv.2020.140198.
[19] AMEEN F,ALSHEHRI W A,NADHARI S A.Effect of electroactive biofilm formation on acetic acid production in anaerobic sludge driven microbial electrosynthesis[J].ACS Sustainable Chemistry & Engineering,2020,8(1):311-318.DOI:10.1021/acssuschemeng.9b05420.
[20] LI Qing,FU Qian,KOBAYASHI H,et al.GO/PEDOT modified biocathodes promoting CO2 reduction to CH4 in microbial electrosynthesis[J].Sustainable Energy & Fuels,2020,4(6):2987-2997.DOI:10.1039/d0se00321b.
[21] HART J L,HANTANASIRISAKUL K,LANG A C,et al.Control of MXenes’ electronic properties through termination and intercalation[J].Nature Communications,2019,10(1):522.DOI:10.1038/s41467-018-08169-8.
[22] TAHIR K,MIRAN W,JANG J,et al.MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system[J].Science of The Total Environment,2021,773:145677.DOI:10.1016/j.scitotenv.2021.145677.
[23] HAN Shuo,LIU Hong,ZHOU C,et al.Growth of carbon nanotubes on graphene as 3D biocathode for NAD+/NADH balance model and high-rate production in microbial electrochemical synthesis from CO2[J].Journal of Materials Chemistry A,2019,7(3):1115-1123.DOI:10.1039/c8ta10465d.
[24] ZHAO Cuie,GAI Panpan,SONG Rongbin,et al.Nanostructured material-based biofuel cells:recent advances and future prospects[J].Chemical Society Reviews,2017,46(5):1545-1564.DOI:10.1039/c6cs00044d.
[25] JIANG Yong,CHU Na,ZHANG Wei,et al.Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide[J].Water Research,2019,159:87-94.DOI:10.1016/j.watres.2019.04.053.
[26] ZHU Yansong,ZHANG Bingsen.Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions[J].Journal of Energy Chemistry,2021,58(7):610-628.DOI:10.1016/j.jechem.2020.10.034.
[27] YANG Yi,NIU Shuwen,HAN Dongdong,et al.Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting[J].Advanced Energy Materials,2017,7(19):1700555(1-26).DOI:10.1002/aenm.201700555.
[28] RAMKUMAR R,MINAKSHI M.Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device[J].Dalton Transactions,2015,44(13):6158-6168.DOI:10.1039/c5dt00622h.
[29] HINDATU Y,ANNUAR M S M,GUMEL A M.Mini-review: Anode modification for improved performance of microbial fuel cell[J].Renewable and Sustainable Energy Reviews,2017,73(C):236-248.DOI:10.1016/j.rser.2017.01.138.
[30] CUI Mengmeng,NIE Huarong,ZHANG Tian,et al.Three-dimensional hierarchical metal oxide-carbon electrode materials for highly efficient microbial electrosynthesis[J].Sustainable Energy & Fuels,2017,1(5):1171-1176.DOI:10.1039/c7se00073a.
[31] ARYAL N,WAN L,OVERGAARD M H,et al.Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode[J].Bioelectrochemistry,2019,128:83-93.DOI:10.1016/j.bioelechem.2019.03.011.
[32] THATIKAYALA D,PANT D,MIN B.MnO2/reduced graphene oxide nanohybrids as a cathode catalyst for the microbial reduction of CO2 to acetate and isobutyric acid[J].Sustainable Energy Technologies and Assessments,2021,45:101114(1-9).DOI:10.1016/j.seta.2021.101114.
[33] ZHU Hao,DONG Zhiwei,HUANG Qiong,et al.Fe3O4/granular activated carbon as an efficient three-dimensional electrode to enhance the microbial electrosynthesis of acetate from CO2[J].RSC Advances,2019,9(59):34095-34101.DOI:10.1039/C9RA06255F.
[34] HE Yuting,LI Qing,LI Jun,et al.Magnetic assembling GO/Fe3O4/microbes as hybridized biofilms for enhanced methane production in microbial electrosynthesis[J].Renewable Energy,2022,185:862-870.DOI:10.1016/j.renene.2021.12.117.
[35] WU Xiaoshuai,QIAO Yan,SHI Zhuanzhuan,et al.Hierarchically porous N-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells[J].ACS Applied Materials & Interfaces,2018,10(14):11671-11677.DOI:10.1021/acsami.7b19826.
[36] JIANG Yujing,HUI Su,JIANG Liping,et al.Functional nanomaterial-modified anodes in microbial fuel cells: Advances and perspectives[J].Chemistry,2023,29(1):e202202002.DOI:10.1002/chem.202202002.
[37] DING Qinran,LIU Qijing,ZHANG Yan,et al.Modular engineering strategy to redirect electron flux into the electron-transfer chain for enhancing extracellular electron transfer in Shewanella oneidensis[J].ACS Synthetic Biology,2023,12(2):471-481.DOI:10.1021/acssynbio.2c00408.
[38] 宋浩,卢昱君,蔚欢,等.一种工程改造希瓦氏菌囊泡提高胞外电子传递的方法: 116004690A[P].2023-04-25.
[39] 邵映芝,车鉴,程驰,等.分子生物学方法提高电活性微生物胞外电子传递效率的研究进展[J].中国生物工程杂志,2021,41(6):50-59.DOI:10.13523/j.cb.2102020.
[40] 刘向,张君奇,张保财,等.强化产电微生物与电极间电子传递速率的研究进展[J].生物工程学报,2021,37(2):361-377.DOI:10.13345/j.cjb.200281.
[41] JIANG Xiaocheng,HU Jinsong,LIEBER A M,et al.Nanoparticle facilitated extracellular electron transfer in microbial fuel cells[J].Nano Letters,2014,14(11):6737-6742.DOI:10.1021/nl503668q.
[42] ANTOLINI E.Composite materials for polymer electrolyte membrane microbial fuel cells[J].Biosensors & Bioelectronics,2015,69:54-70.DOI:10.1016/j.bios.2015.02.013.
[43] SONG Rongbin,WU Yichao,LIN Zongqiong,et al.Living and conducting: Coating individual bacterial cells with in situ formed polypyrrole[J].Angew Chem Int Ed Engl,2017,56(35):10516-10520.DOI:10.1002/anie.201704729.
[44] CHIRANJEEVI P,PATIL S A.Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies[J].Biotechnology Advances,2020,39:107468(1-16).DOI:10.1016/j.biotechadv.2019.107468.
[45] HE Ying,WANG Shurong,HAN Xinyue,et al.Photosynthesis of acetate by sporomusa ovata-CdS biohybrid system[J].ACS Applied Materials & Interfaces,2022,14(20):23364-23374.DOI:10.1021/acsami.2c01918.
[46] YANG Wanning,ZHANG Hong,LAI Junxin,et al.Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging[J].Carbon,2018,128:78-85.DOI:10.1016/j.carbon.2017.11.069.
[47] RAN Zhiyong,YANG Hongxing,LI Zhi,et al.Pillar[6] arene@AuNPs Functionalized N-CQDs@Co3O4 hybrid composite for ultrasensitive electrochemical detection of human epididymis protein[J].ACS Sustainable Chemistry & Engineering,2020,8(27):10161-10172.DOI:10.1021/acssuschemeng.0c02238.
[48] ZHANG Siyu,ZHAO Xinpeng,GUO Xinqi,et al.Boosting the electricity generation of nonclassical electroactive microorganisms enabled by carbon dots[J].Chemical Engineering Journal,2023,462:142147.DOI:10.1016/j.cej.2023.142147.
[49] YANG Chenhui,ASLAN H,ZHANG Peng,et al.Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement[J].Nature Communications,2020,11(1):1379-1379.DOI:10.1038/s41467-020-14866-0.
[50] 李静,张宝刚,刘青松,等.导电材料强化微生物直接种间电子传递产甲烷的研究进展[J].微生物学报,2021,61(6):1507-1524.DOI:10.13343/j.cnki.wsxb.20210176.
[51] GAHLOT P,AHMED B,TIWARI S B,et al.Conductive material engineered direct interspecies electron transfer(DIET)in anaerobic digestion: Mechanism and application[J].Environmental Technology & Innovation,2020,20:101056.DOI:10.1016/j.eti.2020.101056.
[52] CARRILLO-PE?A D,MATEOS R,MORáN A,et al.Reduced graphene oxide improves the performance of a methanogenic biocathode[J].Fuel,2022,321:123957(1-8).DOI:10.1016/j.fuel.2022.123957.
[53] WU Qi,XIAO Han,ZHU Hongguang,et al.Carbon felt composite electrode plates promote methanogenesis through microbial electrolytic cells[J].Energies,2023,16(11):4416。DOI:10.3390/en16114416
[54] YANG Houyun,WANG Yixuan,HE Chuanshu,et al.Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide[J].Applied Energy,2020,274(15):115292(1-11).DOI:10.1016/j.apenergy.2020.115292.
[55] QI Xuejiao,JIA Xuan,WANG Yong,et al.Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis[J].Bioresource Technology,2022,358:127385(1-10).DOI:10.1016/j.biortech.2022.127385.
[56] DEUTZMANN J S,KRACKE F,SPORMANN A M.Microbial electromethanogenesis powered by curtailed renewable electricity[J].Cell Reports Physical Science,2023,4(8):101515.DOI:10.1016/j.xcrp.2023.101515.
[57] DE LA PUENTE C,CARRILLO-PE?A D,PELAZ G,et al.Microbial electrosynthesis for CO2 conversion and methane production: Influence of electrode geometry on biofilm development[J].Greenhouse Gases:Science and Technology,2023,13(2):173-185.DOI:10.1002/ghg.2185.
[58] ROHBOHM N,SUN Tianran,BLASCO-GóMEZ R,et al.Carbon oxidation with sacrificial anodes to inhibit O2 evolution in membrane-less bioelectrochemical systems for microbial electrosynthesis[J].EES Catalysis,2023,1(6):972-986.DOI:10.1039/D3EY00141E.
[59] VU M T,NOORI M T,MIN B.Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems[J].Bioresource Technology,2020,296:122265(1-9).DOI:10.1016/j.biortech.2019.122265.
[60] LI Yixin,LUO Qingliu,SU Jiaying,et al.Metabolic regulation of Shewanella oneidensis for microbial electrosynthesis: From extracellular to intracellular[J].Metabolic Engineering,2023,80:1-11.DOI:10.1016/j.ymben.2023.08.004.
[61] GUPTA P,VERMA N.Conversion of CO2 to formate using activated carbon fiber-supported g-C3N4-NiCoWO4 photoanode in a microbial electrosynthesis system[J].Chemical Engineering Journal,2022,446:137029(1-14).DOI:10.1016/j.cej.2022.137029.
[62] YU Linpeng,YUAN Yong,TANG Jiahuan,et al.Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2[J].Bioelectrochemistry,2017,117:23-28.DOI:10.1016/j.bioelechem.2017.05.001.
[63] QIU Z,ZHANG K,LI X L,et al.Sn promotes formate production to enhance microbial electrosynthesis of acetate via indirect electron transport[J].Biochemical Engineering Journal,2023,192:108842.DOI:10.1016/j.bej.2023.108842.
[64] LUO Jianquan,MEYER A S,MATEIU R V,et al.Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol[J].New Biotechnology,2015,32(3):319-327.DOI:10.1016/j.nbt.2015.02.006.
[65] ZHANG Zhibo,WANG Hui,NIE Yi,et al.Natural deep eutectic solvents enhanced electro-enzymatic conversion of CO2 to methanol[J].Frontiers in Chemistry,2022,10:894106.DOI:10.3389/fchem.2022.894106.
[66] JOURDIN L,FREGUIA S,FLEXER V,et al.Bringing high-rate,CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions[J].Environmental Science & Technology,2016,50(4):1982-1989.DOI:10.1021/acs.est.5b04431.
[67] JOURDIN L,BURDYNY T.Microbial electrosynthesis: Where do we go from here?[J].Trends in Biotechnology,2021,39(4):359-69.DOI:10.1016/j.tibtech.2020.10.014.
[68] ARYAL N,TREMBLAY P L,LIZAK D M,et al.Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide[J].Bioresource Technology,2017,233:184-190.DOI:10.1016/j.biortech.2017.02.128.
[69] JOURDIN L,GRIEGER T,MONETTI J,et al.High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide[J].2015,49(22):13566-13574.DOI:10.1021/acs.est.5b03821.
[70] 祁家欣,曾翠平,骆海萍,等.羧基改性阴极对微生物电合成系统产乙酸性能的影响机制[J].环境科学,2019,40(05):2302-2309.DOI:10.13227/j.hjkx.201808250.
[71] ZHANG Tian,NIE Huarong,BAIN T S,et al.Improved cathode materials for microbial electrosynthesis[J].Energy & Environmental Science,2013,6(1):217-224.DOI:10.1039/C2EE23350A.
[72] VIGGI C C,COLANTONI S,FALZETTI F,et al.Conductive magnetite nanoparticles enhance the microbial electrosynthesis of acetate from CO2 while diverting electrons away from methanogenesis[J].Fuel Cells,2020,20(1):98-106.DOI:10.1002/fuce.201900152.
[73] 孙芝兰,陈以峰.乙烯的直接生物合成[J].生物工程学报,2013,29(10):1431-1440.DOI:10.13345/j.cjb.2013.10.008.
[74] LI Yang,YANG Shujie,MA Danlei,et al.Microbial engineering for the production of C2-C6 organic acids[J].Natural Product Reports,2021,38(8):1518-1546.DOI:10.1039/d0np00062k.
[75] ZHU Yihui,EITEMAN M A,ALTMAN R,et al.High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain[J].Applied and Environmental Microbiology,2008,74(21):6649-6655.DOI:10.1128/AEM.01610-08.
[76] WANG Zhikun,GAO Cuijuan,WANG Qian,et al.Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering[J].Biochemical Engineering Journal,2012,67:126-131.DOI:10.1016/j.bej.2012.06.006.
[77] LUO Zhengshan,LIU Song,DU Guocheng,et al.Enhanced pyruvate production in Candida glabrata by carrier engineering[J].Biotechnology and Bioengineering,2018,115(2):473-482.DOI:10.1002/bit.26477.
[78] BOUZON M,PERRET A,LOREAU O,et al.A synthetic alternative to canonical one-carbon metabolism[J].ACS Synthetic Biology,2017,6(8):1520-1533.DOI:10.1021/acssynbio.7b00029.
[79] 任杰,曾安平.基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J].合成生物学,2021,2(06):854-862.DOI:10.12211/2096-8280.2021-086.
[80] MOHAN V S,MODESTRA J A,AMULYA K,et al.A circular bioeconomy with biobased products from CO2 sequestration[J].Trends in Biotechnology,2016,34(6):506-519.DOI:10.1016/j.tibtech.2016.02.012.
[81] WU Zaiqiang,WANG Junsong,ZHANG Xueli,et al.Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool[J].Biochemical Engineering Journal,2019,146:132-142.DOI:10.1016/j.bej.2019.03.015.
[82] GANIGUé R,PUIG S,BATLLE-VILANOVA P,et al.Microbial electrosynthesis of butyrate from carbon dioxide[J].Chemical Communications,2015,51(15):3235-3238.DOI:10.1039/c4cc10121a。
[83] SHARMA M,ARYAL N,SARMA P M,et al.Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone[J].Chemical Communications,2013,49(58):6495-6497.DOI:10.1039/c3cc42570c.
[84] VASSILEV I,HERNANDEZ P A,BATLLE-VILANOVA P,et al.Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide[J].ACS Sustainable Chemistry & Engineering,2018,6(7):8485-8493.DOI:10.1021/acssuschemeng.8b00739.
[85] BATLLE-VILANOVA P,GANIGUé R,RAMIó-PUJOL S,et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117:57-64.DOI:10.1016/j.bioelechem.2017.06.004.
[86] JOURDIN L,WINKELHORST M,RAWLS B,et al.Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: Steering with CO2 loading rate and hydraulic retention time[J].Bioresource Technology Reports,2019,7:100284.DOI:10.1016/j.biteb.2019.100284.
[87] ROGHAIR M,HOOGSTAD T,STEIK D P B T B,et al.Controlling ethanol use in chain elongation by CO2 loading rate[J].Environmental Science & Technology,2018,52(3):1496-1505.DOI:10.1021/acs.est.7b04904.
[88] KRACKE F,WONG A B,MAEGAARD K,et al.Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis[J].Communications Chemistry,2019,2(1):45(1-9).DOI:10.1038/s42004-019-0145-0.
[89] TAHIR K,MIRAN W,JANG J,et al.Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode[J].Environmental Research,2021,196:110907.DOI:10.1016/j.envres.2021.110907.
[90] THATIKAYALA D,MIN B.Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO2[J].Science of The Total Environment,2021,768:144477(1-11).DOI:10.1016/j.scitotenv.2020.144477.
[91] SRIKANTH S,KUMAR M,SINGH D,et al.Long-term operation of electro-biocatalytic reactor for carbon dioxide transformation into organic molecules[J].Bioresource Technology,2018,265:66-74.DOI:10.1016/j.biortech.2017.12.075.
[92] MAY H D,EVANS P J,LABELLE E V.The bioelectrosynthesis of acetate[J].Current Opinion in Biotechnology,2016,42:225-233.DOI:10.1016/j.copbio.2016.09.004.
[93] LIU Wenzong,HUANG Shihching,ZHOU Aijuan,et al.Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge[J].International Journal of Hydrogen Energy,2012,37(18):13859-13864.DOI:10.1016/j.ijhydene.2012.04.090.
[94] WANG Donglin,LIANG Qinjun,CHU Na,et al.Deciphering mixotrophic microbial electrosynthesis with shifting product spectrum by genome-centric metagenomics[J].Chemical Engineering Journal,2023,451:139010(1-9).DOI:10.1016/j.cej.2022.139010.
[95] VAN EERTEN-JANSEN M C A A,TER HEIJNE A,GROOTSCHOLTEN T I M,et al.Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures[J].ACS Sustainable Chemistry & Engineering,2013,1(5):513-518.DOI:10.1021/sc300168z.
[96] TEO Weisuong,LING Hua,YU Aiqun,et al.Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel[J].Biotechnology for Biofuels,2015,8(1):1-9.DOI:10.1186/s13068-015-0361-5.
[97] JIA Yating,QIAN Danshi,CHEN Yuancai,et al.Intra/extracellular electron transfer for aerobic denitrification mediated by in-situ biosynthesis palladium nanoparticles[J].Water Research,2021,189:116612(1-12).DOI:10.1016/j.watres.2020.116612.
[98] JING Xinxin,WU Yichao,SHI Liang,et al.Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite[J].Applied and Environmental Microbiology,2020,86(23):e01941-20.DOI:10.1128/AEM.01941-20.
[99] LABELLE E,MAY H.Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate[J].Frontiers in Microbiology,2017,8:756(1-9).DOI:10.3389/fmicb.2017.00756.
[100] YANG Y,JI Z,ZHOU J,et al.Production of C2+ products in novel microbial electrosynthesis coupled with anaerobic membrane bioreactor[J].Chemical Engineering Journal,2023,476:146328.DOI: 10.1016/j.cej.2023.146328.
[101] SRIKANTH S,SINGH D,VANBROEKHOVEN K,et al.Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode[J].Bioresource Technology,2018,265:45-51.DOI:10.1016/j.biortech.2018.02.058.
[102] LIU H X,SONG T S,FEI K Q,et al.Microbial electrosynthesis of organic chemicals from CO2 by Clostridium scatologenes ATCC 25775 T[J].Bioresources and Bioprocessing,2018,5:7.DOI:10.1186/S40643-018-0195-7.

备注/Memo

备注/Memo:
收稿日期: 2024-07-15
通信作者: 李逸鑫(1992-),讲师,博士。主要从事微生物胞外电子传递与金属转化、废水/固体废弃物的资源化及环境污染修复的研究。E-mail:liyixin@hqu.edu.cn。https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2024-09-20