[1]许浪,王银亮,齐婷婷,等.外场强化作用下分子筛合成的研究进展[J].华侨大学学报(自然科学版),2024,45(5):543-550.[doi:10.11830/ISSN.1000-5013.202407041]
 XU Lang,WANG Yinliang,QI Tingting,et al.Research Progress of Molecular Sieves Synthesis Under External Field Intensification[J].Journal of Huaqiao University(Natural Science),2024,45(5):543-550.[doi:10.11830/ISSN.1000-5013.202407041]
点击复制

外场强化作用下分子筛合成的研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第5期
页码:
543-550
栏目:
出版日期:
2024-09-20

文章信息/Info

Title:
Research Progress of Molecular Sieves Synthesis Under External Field Intensification
文章编号:
1000-5013(2024)05-0543-08
作者:
许浪1 王银亮2 齐婷婷1 初广文1 邹海魁1 孙宝昌1
1. 北京化工大学 化学工程学院, 北京 100029;2. 新疆天业(集团)有限公司, 新疆 石河子 832000
Author(s):
XU Lang1 WANG Yinliang2 QI Tingting1CHU Guangwen1 ZOU Haikui1 SUN Baochang1
1. School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2. Xinjiang Tianye Company Limited, Shihezi 832000, China
关键词:
分子筛 外场强化 超重力技术 微波技术 旋转液膜技术
Keywords:
molecular sieve external field intensification high-gravity technology microwave technology rotating liquid film technology
分类号:
TQ424.25;TQ426.65
DOI:
10.11830/ISSN.1000-5013.202407041
文献标志码:
A
摘要:
综述了各种外场作用(包括微重力技术、超重力技术、旋转液膜技术、超声波技术、微波技术、紫外和电场)对分子筛合成过程、结构特性和催化/吸附应用性能影响,以及作用机制等方面的研究进展。结果表明:外场作用下有利于合成小粒径、大比表面积、高孔隙率和多活性位点的分子筛吸附/催化材料,结合自身应用前景,超重力技术、微波技术和旋转液膜技术为高效绿色合成高性能分子筛提供了新的技术支持。
Abstract:
In this paper, the effects of various external field conditions(including micro-gravity technology, high-gravity technology, rotating liquid film technology, ultrasonic waves technology, microwave technology, ultraviolet radiation technology, and electric fields)on molecular sieves synthesis processes, structural properties, catalytic/adsorption performance, as well as the mechanisms are reviewed. The results show that the application of external fields promotes the production of molecular sieve adsorbents/catalysts with smaller particle sizes, larger specific surface areas, higher porosities, and more active sites. Considering the promising applications of these technologies, high-gravity technology, rotating liquid film technology and microwave technology provide new technical supports for the efficient synthesis of high-performance molecular sieves.

参考文献/References:

[1] 洪美花,郭子峰,刘冠锋,等.碱处理方法合成多级孔分子筛的进展与挑战[J].无机盐工业,2023,55(6):36-42.DOI: 10.19964/j.issn.1006-4990.2022-000.
[2] 刘贵丽,刘植昌.分子筛的合成方法研究进展[J].现代化工,2015,35(9):34-37,39.DOI:10.16606/j.cnki.issn0253-4320.2015.09.008.
[3] FENG Guodong,CHENG Peng,YAN Wenfu,et al.Accelerated crystallization of zeolites via hydroxyl free radicals[J].Science,2016,351(6278):1188-1191.DOI:10.1126/science.aaf1559.
[4] 齐乃明,张文辉,高九州,等.空间微重力环境地面模拟试验方法综述[J].航天控制,2011,29(3):95-100.DOI:10.16804/j.cnki.issn1006-3242.2011.03.019.
[5] CONTRERAS-PEREDA N,RODRíGUEZ-SAN-MIGUEL D,FRANCO C,et al.Synthesis of 2D porous crystalline materials in simulated microgravity[J].Advanced Materials,2021,33(30):2101777(1-9).DOI:10.1002/adma.202101777.
[6] WARZYWODA J,BAC N,JANSEN J C,et al.Growth of zeolites A and X in low earth orbit[J].Journal of Crystal Growth,2000,220(1/2):140-149.DOI:10.1016/S0022-0248(00)00659-X.
[7] AKPORIAYE DE,STGCKER M,JUNGGREEN H.Results of the crystallisation of zeolite molecular sieves under microgravity conditions during the EURECA-1 mission[J].Advances in Space Research,1995,16(8):55-58.DOI:10.1016/0273-1177(95)00270-O.
[8] ZHANG H,KAMOTANI Y,OSTRACH S.Zeolite crystallization process modeling and comparison with microgravity flight results[J].Journal of Spacecraft and Rockets,1995,32(1):110-116.DOI:10.2514/3.26582.
[9] AKATA B,YILMAZ B,JIRAPONGPHAN SS,et al.Characterization of zeolite Beta grown in microgravity[J].Microporous and Mesoporous Materials,2004,71(1/2/3):1-9.DOI:10.1016/j.micromeso.2004.03.012.
[10] SONG Hongwei,ILEGBUSIA O J,Jr ALBERT S.Kinetics of zeolite NaA crystallization in microgravity[J].Materials Letters,2005,59(21):2668-2672.DOI:10.1016/j.matlet.2005.04.015.
[11] 陈建峰,初广文,邹海魁,等.超重力反应工程[M].北京:化学工业出版社,2020.
[12] COLIN R,HOWARD M R.Mass transfer apparatus and its use: EP19780300622[P].1979-06-27
[13] 陈建峰.超重力技术及应用[M].2版.北京:化学工业出版社,2021.
[14] XIANG Liangyu,WU Liankun,GAO Lidong,et al.Pilot scale applied research on CO2 removal of natural gas using a rotating packed bed with propylene carbonate[J].Chemical Engineering Research and Design,2019,150:33-39.DOI:10.1016/j.cherd.2019.03.038.
[15] 郭浩,牛杰.超重力技术的研究及应用[J].化工装备技术,2016,37(5):61-64.DOI:10.16759/j.cnki.issn.1007-7251.2016.10.016.
[16] 齐婷婷,滕加伟,史静,等.超重力预混+动态水热法制备ZSM-5分子筛: 水热过程影响机制[J].化工进展,2021,40(11):6228-6234.DOI:10.16085/j.issn.1000-6613.2020-2326.
[17] MALINOWSKA JW,PITKOWSKI M,BLATKIEWICZ M,et al.Reactive absorption of carbon dioxide in aqueous n-methyldiethanoloamine solutions catalysed with carbonic anhydrase in a rotatingpacked bed(RPB)[J].Chemical Engineering and Processing: Process Intensification,2023,184:109266-109277.DOI:10.1016/j.cep.2023.109266.
[18] QI T,SHI J,WANG X,et al.Synthesis of hierarchical ZSM-5 zeolite in a rotating packed bed: Mechanism,property and application[J].Microporousand Mesoporous Materials,2021,311:110679-110688.DOI:10.1016/j.micromeso.2020.110679.
[19] 何万仁,陈昌海,史静,等.超重力过程强化技术制备片状MFI分子筛及其催化性能[J].石油化工,2024,53(2):167-174.DOI:10.3969/j.issn.1000-8144.2024.02.004.
[20] XU Yongquan,CAI Lianguo,LEI Shao,et al.Preparation and characterization of NaY zeolite in a rotating packed bed[J].Petroleum Science,2012,9:106-109.DOI:10.1007/s12182-012-0190-0.
[21] 齐婷婷.超重力强化硅铝分子筛制备及应用研究[D].北京:北京化工大学,2023.
[22] 侯文慧.超重力强化稀土分子筛原位合成研究[D].北京:北京化工大学,2023.
[23] 孙宝昌,齐婷婷,罗勇,等.多孔材料连续化生产的微波耦合超重力反应系统: 110652950A[P].2020-01-07.
[24] 孙宝昌,刘良印,初广文,等.一种适用于液-固非均相反应体系的超重力耦合超声反应装置: 116726822A[P].2023-09-12.
[25] QI Tingting,KANG Yingying,AROWO M,et al.Production of ZSM-5 zeolites using rotating packed bed: Impact mechanism and process synthesis studies[J].Chemical Engineering Science,2021,244:116794-116804.DOI:10.1016/j.ces.2021.116794.
[26] CHEN Jianfeng,WANG Yuhong,GUO Fen,et al.Synthesis ofnanoparticles with novel technology: High-gravity reactive precipitation[J].Industrial & Engineering Chemistry Research,2000,39(4):948-954.DOI:10.1021/ie990549a.
[27] 韦礼顺,许兰喜,李殿卿.旋转液膜反应器间隙对晶体粒径影响的研究[J].北京化工大学学报(自然科学版),2018,45(1):8-12.DOI:10.13543/j.bhxbzr.2018.01.002.
[28] 卢昌盛.基于微液膜反应器的反应结晶过程及可控制备铋基光催化材料的研究[D].北京:北京化工大学,2022.
[29] GUO Shengchang,EVANS D G,LI Dianqing,et al.Experimental and numerical investigation of the precipitation of barium sulfate in a rotating liquid film reactor[J].AIChE Journal,2009,55(8):2024-2034.DOI:10.1002/aic.11818.
[30] 林彦军,万家豪,李凯涛.一种多流体并流旋转液膜反应器及其在制备层状复合金属氢氧化物中的应用: 116586001A[P].2023-08-15.
[31] 乔瑞平,耿翠玉,张伦梁,等.一种负载型层状双金属复合氧化物催化剂的制备方法:105195148A[P].2015-12-30.
[32] TAN Jianghao,WANG Qi,LIN Yanjun,et al.Direct preparation of battery-grade lithium carbonate via a nucleation-crystallization isolating process intensified by a micro-liquid film reactor[J].The Canadian Journal of Chemical Engineering,2023,101(2):870-882.DOI:10.1002/cjce.24436.
[33] ZHAO Yun,LI Feng,ZHANG Rui,et al.Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J].Chemistry of Materials,2002,14(10):4286-4291.DOI:10.1021/cm020370h.
[34] FENG Yongjun,LI Dianqing,LI Chunxi,et al.Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution[J].Clays and Clay Minerals,2003,51(5):566-569.DOI:10.1346/CCMN.2003.0510510.
[35] 冒爱琴,宋洪昌,李凤生,等.不同分散设备对超细TiO2水分散性影响的研究[J].精细与专用化学品,2003,11(22):18-20.DOI:10.3969/j.issn.1008-1100.2003.22.008.
[36] 贺勇,杨柳,王聪慧,等.超声波-机械搅拌联合作用下 NaY 分子筛的合成及影响因素[J].工业催化,2023,23(11):892-896.DOI:10.3969/j.issn.1008-1143.2015.11.008.
[37] 郭红,杨先海,盛文斌,等.超声震荡低温水热合成纳米X型沸石分子筛[J].当代化工研究,2020(15):36-38.DOI:10.3969/j.issn.1672-8114.2020.15.016.
[38] HAN Jinfeng,HA Ying,GUO Mingyu,et al.Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method[J].Ultrasonics Sonochemistry,2019,59:104703-114713.DOI:10.1016/j.ultsonch.2019.104703.
[39] CHEN Zongrong,SONG Guoqiang,LI C,et al.Coal fly ash to Y zeolite of great purity and crystallinity:A new and green activation method of combined in situ microwave and ultrasound[J].Solid State Sciences,2023,136:107102-107112.DOI:10.1016/j.solidstatesciences.2022.107102.
[40] 马芳,李发琪,王智彪.超声空化效应的研究进展[J].临床超声医学杂志,2003,5(5):292-294.DOI:10.3969/j.issn.1008-6978.2003.05.014.
[41] BELVISO C,CAVALCANTE F,FIORE S.Ultrasonic waves induce rapid zeolite synthesis in a seawater solution[J].Ultrasonics Sonochemistry,2013,20(1):32-36.DOI:10.1016/j.ultsonch.2012.06.004.
[42] MOKUDAI T,KAWADA M,TADAKI D,et al.Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water[J].Ultrasonics Sonochemistry,2024,103:106809-106818.DOI:10.1016/j.ultsonch.2024.106809.
[43] 李明昊.超声技术在无机材料合成与制备中的应用分析[J].信息记录材料,2018,19(7):24-25.
[44] LI Yanshuo,YANG Weishen.Microwave synthesis of zeolite membranes: A review[J].Journal of Membrane Science,2008,316(1/2):3-17.DOI:10.1016/j.memsci.2007.08.054.
[45] CUNDY C S,COX P A.The hydrothermal synthesis of zeolites: Precursors,intermediates and reaction mechanism[J].Microporous and Mesoporous Materials,2005,82(1/2):1-78.DOI:10.1016/j.micromeso.2005.02.016.
[46] 陈彦广,徐婷婷,韩洪晶,等.粉煤灰微波-水热合成法制备分子筛的研究进展[J].化工进展,2015,34(8):2916-2924.DOI:10.16085/j.issn.1000-6613.2015.08.002.
[47] LE T M,NGUYEN G T,DAT N D,et al.An innovative approach based on microwave radiation for synthesis of zeolite 4A and porosity enhancement[J].Results in Engineering,2023,19:101235-101246.DOI:10.1016/j.rineng.2023.101235.
[48] CHENG Zhilin,WAN Hhuilin,LIU Zan.Fabrication of zeolite A rods with irregular macropores by self-assembly of zeolite A microcrystals using microwave-assisted hydrothermal synthesis[J].Chinese Journal of Chemistry,2004,22(12):1454-1455.DOI:10.1002/cjoc.20040221216.
[49] KHAN N A,YOO D K,LEE S,et al.Microwave-assisted rapid synthesis of nanosized SSZ-13 zeolites for effective conversionof ethylene to propylene[J].Journal of Industrial and Engineering Chemistry,2023,121:242-248.DOI:10.1016/j.jiec.2023.01.028.
[50] 宁波大学李砚硕团队.有机溶剂超深度脱水分子筛膜和成套装备[EB/OL].(2022-08-16)[2024-07-28] . https://heec.cahe.edu.cn/school/science-project/30955.html.
[51] BAGHBANZADEH M,CARBONE L,COZZOLI P D,et al.Microwave-assisted synthesis of colloidal inorganic nanocrystals[J].Angewandte Chemie International Edition,2011,50(48):11312-11359.DOI:10.1002/anie.201101274.
[52] ZENG Xiaojun,HU Xudong,SONG Hanbin,et al.Microwave synthesis of zeolites and their related applications[J].Microporous and Mesoporous Materials,2021,323:111262-111280.DOI:10.1016/j.micromeso.2021.111262.
[53] TOMPSETT G A,CONNER W C,YNGVESSON K S.Microwave synthesis of nanoporous materials[J].Chemphyschem,2006,7(2):296-319.DOI:10.1002/cphc.200500449.
[54] EDDY L,XU Shichen,LIU Changhao,et al.Electric field effects in flash joule heating synthesis[J].Journal of the American Chemical Society,2024,146(23):16010-16019.DOI:10.1021/jacs.4c02864.
[55] GOTI G,MANAL K,SIVAGURU J,et al.The impact of UV light on synthetic photochemistry and photocatalysis[J].Nature Chemistry,2024,16(5):684-692.DOI:10.1038/s41557-024-01472-6.
[56] JIN Fan,WEI Min,LIU Chengbu,et al.The mechanism for the formation of OH radicals in condensed-phase water under ultraviolet irradiation[J].Physical Chemistry Chemical Physics,2017,19(32):21453-21460.DOI:10.1039/c7cp01798g.
[57] NOVITA T H,KADJA G T M.Hydroxyl radical-regulated crystallization of hierarchical H-ZSM-5 at low temperatures for palm oil conversion into high aromatic green gasoline[J].Bioresource Technology Reports,2024,26:101867-101877.DOI:10.1016/j.biteb.2024.101867.
[58] CHENG Peng,FENG Guodong,SUN Chang,et al.An efficient synthetic route to accelerate zeolite synthesis via radicals[J].Inorganic Chemistry Frontiers,2018,5(9):2106-2110.DOI:10.1039/C8QI00441B.
[59] GHAANI M R,KUSALIK P G,ENGLISH N J.Massive generation of metastable bulk nanobubbles in water by external electric fields[J].Science Advances,2020,6(14):eaaz0094.DOI:10.1126/sciadv.aaz0094.
[60] TAKAHASHI M,CHIBA K,LI Pan.Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J].Journal Of Physical Chemistry B,2007,111(6):1343-1347.DOI:10.1021/jp0669254.

备注/Memo

备注/Memo:
收稿日期: 2024-07-28
通信作者: 孙宝昌(1984-),男,教授,博士,博士生导师,主要从事超重力强化技术与高效催化剂制备的研究。E-mail:sunbaoc@buct.edu.cn。
基金项目: 国家重点研发计划项目(2023YFA1507700); 国家自然科学基金资助集成项目(U22B6011)
更新日期/Last Update: 2024-09-20