[1]温锦元,黄宴委.速度矢量场二阶滑模无人艇引导律[J].华侨大学学报(自然科学版),2024,45(3):324-331.[doi:10.11830/ISSN.1000-5013.202402012]
 WEN Jinyuan,HUANG Yanwei.Second-Order Sliding Mode Guidance Law in Velocity Vector Field for Unmanned Surface Vessel[J].Journal of Huaqiao University(Natural Science),2024,45(3):324-331.[doi:10.11830/ISSN.1000-5013.202402012]
点击复制

速度矢量场二阶滑模无人艇引导律()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第3期
页码:
324-331
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Second-Order Sliding Mode Guidance Law in Velocity Vector Field for Unmanned Surface Vessel
文章编号:
1000-5013(2024)03-0324-08
作者:
温锦元 黄宴委
福州大学 电气工程及自动化学院, 福建 福州 350116
Author(s):
WEN Jinyuan HUANG Yanwei
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
关键词:
无人水面艇 矢量场引导律 路径跟踪 滑模控制
Keywords:
unmanned surface vessel vector field guidance law path following sliding mode control
分类号:
TP273
DOI:
10.11830/ISSN.1000-5013.202402012
文献标志码:
A
摘要:
针对航速和航道未知扰动等因素,提出一种速度矢量场二阶滑模无人水面艇(USV)引导律。首先,建立无人艇运动学和航向角动力学模型;其次构造路径误差(ye)模型,设计基于航速(Vg)的路径误差矢量场,速度越大,航向角变化越小;再结合二阶滑模面设计一种速度矢量场二阶滑模无人艇引导律,并考虑未知扰动因素Δ分析速度矢量场二阶滑模无人艇引导律的稳定性。仿真结果表明:相比于经典矢量场,速度矢量场有效实现航速Vg越快,航向角变化率越小,矢量场越平缓,提高了USV航行安全性和稳定性;基于速度矢量场二阶滑模无人艇引导律的路径跟踪控制系统鲁棒性更强,路径跟踪准确度更高,能够较好地完成路径跟踪。
Abstract:
Aiming at factors such as unknown disturbances of course speed and course path, a second-order sliding mode guidance law in velocity vector field fof unmanned surface vessel( USV)is proposed in the paper. Firstly, kinematics and course angle dynamics models of USV are established. Secondly, the path error(ye)model is constructed, and the path error vector field based on course speed(Vg)is designed. The greater the speed, the smaller the change of course angle. Recombined with the second-order sliding mode surface, a velocity vector field second-order sliding mode USV guidance law is designed, and the stability of velocity vector field second-order sliding mode USV guidance law is analyzed considering the unknown disturbance factor Δ. The simulation results show that compared with the classical vector field, the velocity vector field achieves faster course speed Vg with smaller course angle change rate and smoother vector field, which improves the navigation safety and stability of USV. The path tracking control system based on the second-order sliding mode guidance law in a velocity vector field exhibits enhanced robustness and higher accuracy in path following, which achieves path tracking with remarkable precision.

参考文献/References:

[1] ZHANG Weidong,LIU Xiaocheng,HANG Peng.Progress and challenges of overwater unmanned systems[J].Acta Aytomatica Sinica,2022,46(5):847-857.DOI:10.16383/j.aas.c190363.
[2] JOONWOO A,SEHO S,MISUNG K,et al.Accurate path tracking by adjusting look-ahead point in pure pursuit method[J].International Journal of Automotive Technology,2021,22(1):119-129.DOI:10.1007/s12239-021-0013-7.
[3] LIU Lu,WANG Dang,ZHOU Huapeng,et al.Predictor-based LOS guidance law for path following of underactuated marine surface vehicles with side slip compensation[J].Ocean Engineering,2016,124:340-348.DOI:10.1109/ICICIP.2015.7388184.
[4] LIU Fengxu,SHEN Yue,WANG Dianrui,et al.Drift angle compensation-based adaptive line-of-sight path following for autonomous underwater vehicle[J].Applied Ocean Research,2019,93:101943.DOI:10.1016/j.apor.2019.101943.
[5] 赵述龙,王祥科,张代兵,等.固定翼无人机曲线路径跟踪的积分向量场方法[J].国防科技大学学报,2018,40(2):119-124.DOI:10.11887/j.cn.201802019.
[6] LIANG Yueqian,JIA Yingmin.Tangent vector field approach for curved path following with input saturation[J].Systems and Control Letter,2017,104:49-58.DOI:10.1016/j.sysconle.2017.04.001.
[7] LAWRENCE D A,FREW E W,PISANO W J.Lyapunov vector fields for autonomous unmanned aircraft flight control[J].Journal of Guidance, Control, and Dynamics: A Publication of the American Institute of Aeronautics and Astronautics Devoted to the Technology of Dynamics and Control,2008(5):31.DOI:10.2514/1.34896.
[8] FREW E W,LAWRENCE D A,MORRIS S.Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields[J].Journal of Guidance Control and Dynamics,2008,31(2):290-306.DOI:10.2514/1.30507.
[9] JUN Woyoung,LIM S H,LE Dongjin,et al.Unmanned aircraft vector field path following with arrival angle control[J].Journal of Intelligent and Robotic Systems,2016,84:311-325.DOI:10.1007/s10846-016-0332-5.
[10] YAO Xuliang,WANG Xiaowei.Integral vector field control for three-dimensional path following of autonomous underwater vehicle[J].Journal of Marine Science and Technology,2021,26(1):159-173.DOI:10.1007/s00773-020-00730-9.
[11] YAO W,KAPITANYUK Y A,CAO M.Robotic path following in 3D using a guiding vector field[C]//IEEE Conference on Decision and Control.New York:IEEE Press,2018:4475-4480.DOI:10.1109/CDC.2018.8619780.
[12] LIANG Yueqiang,JIA Yingmin.Combined vector field approach for 2D and 3D arbitrary twice differentiable curved path following with constrained UAVs[J].Journal of Intelligent and Robotic Systems,2016,83(1):133-160.DOI:10.1007/s10846-015-0308-x.
[13] DONG Wei,WANG Chunyan,LIU JunHui,et al.Three-dimensional vector guidance law with impact time and angle constraints[J].Journal of the Franklin Institute,2023,360(2):693-718.DOI:10.1016/j.jfranklin.2022.11.035.
[14] 左宗玉,王欣欣.欠驱动飞艇平面路径跟踪控制[J].控制与决策,2017,32(6):6.DOI:10.13195/j.kzyjc.2016.0464.
[15] NELSON D,BARBER D B,MCLAIN T,et al.Vector field path following for miniature air vehicles[J].IEEE Transactions on Robotics,2007,23(3):519-529.DOI:10.1109/TRO.2007.898976.
[16] WANG Ximen,SPANDAN R,STEFANO F,et al.Adaptive vector field guidance without a priori knowledge of course dynamics and wind[J].IEEE/ASME Transactions on Mechatronics,2022,27(6):4597-4607.DOI:10.1109/TMECH.2022.3160480.
[17] HX A,TIF B,CGS A.Uniformly semiglobally exponential stability of vector field guidance law and autopilot for path-following[J].European Journal of Control,2020,53:88-97.DOI:10.1016/j.ejcon.2019.09.007.
[18] XU Haitong,GUEDES S C.Vector field path following for surface marine vessel and parameter identification based on LS-SVM[J].Ocean Engineering,2016,113:151-161.DOI:10.1016/j.oceaneng.2015.12.037.
[19] DAS M,MAHANTA C.Optimal second order sliding mode control for linear uncertain systems[J].ISA Transactions,2014,53(6):1807-1815.DOI:10.1016/j.isatra.2014.08.010.
[20] 王勃,王天擎,于泳,等.感应电机电流环非线性积分滑模控制策略[J].电工技术学报,2021,36(10):2039-2048.DOI:10.19595/j.cnki.1000-6753.tces.200250.
[21] 康尔良,贺建智,王一琛.永磁同步电机非奇异终端滑模控制器的设计[J].电机与控制学报,2021,25(12):58-64.DOI:10.15938/j.emc.2021.12.007.
[22] 陈正升,王雪松,程玉虎.考虑扰动与输入饱和的机械臂连续非奇异快速终端滑模控制[J].控制与决策,2022,37(4):903-912.DOI:10.13195/j.kzyjc.2020.1335.
[23] CHALANGA A,KAMA S,FRIDMAN L M,et al.Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches[J].IEEE Transactions on Industrial Electronics,2016,63(6):3677-3685.DOI:10.1109/TIE.2016.2523913.
[24] GAO Weibing,HUNG J C.Variable structure control of nonlinear systems: A new approach[J].IEEE Transactions on Industrial Eletronics,1993,40(1):45.DOI:10.1109/41.184820.
[25] LUO Weilin,FAN Zhang.Time-invariant discontinuous feedback stablization of underactuated surface vessel under wave disturbance[C]//IEEE International Conference on Security, Pattern Analysis, and Cybernetics.Chengdu:IEEE Press.2021:466-469.
[26] FOSSEN T I.Handbook of marine craft hydrodynamics and motion control[M].West Sussex: John Wiley and Sons,2011.

备注/Memo

备注/Memo:
收稿日期: 2024-02-12
通信作者: 黄宴委(1976-),教授,博士,主要从事运动控制、鲁棒控制及非线性控制的研究。E-mail:sjtu_huanghao@fzu.edu.cn。
基金项目: 国家自然科学基金资助项目(51977040); 福建省工业科技引导项目(2019H0007)
更新日期/Last Update: 2024-05-20