参考文献/References:
[1] FUKUDA I,TSUTSUMI M.On coupled Klein-Gordon-Schr?dinger equations Ⅱ[J].Journal of Mathematical Analysis and Applications,1978,66(2):358-378.DOI:10.1016/0022-247X(78)90239-1.
[2] BAILLON J B,CHADAM J M.The cauchy problem for the coupled Schr?dinger-Klein-Gordon equations[J].North-Holland Mathematics Studies,1978,30:37-44.DOI:10.1016/S0304-0208(08)70857-0.
[3] DARWISH A,FAN Engui.A series of new explicit exact solutions for the coupled Klein-Gordon-Schr?dinger equations[J].Chaos,Solitons and Fractals,2004,20(3):609-617.DOI:10.1016/S0960-0779(03)00419-3.
[4] WANG Mingliang,ZHOU Yubin.The periodic wave solutions for the Klein-Gordon-Schr?dinger equations[J].Physics Letters A,2003,318(1/2):84-92.DOI:10.1016/j.physleta.2003.07.026.
[5] WANG Baoxiang.Classical global solutions for nonlinear Klein-Gordon-Schr?dinger equations[J].Mathematical Methods in the Applied Sciences,1997,20(7):599-616.DOI:10.1002/(SICI)1099-1476(19970510)20:7<599::AID-MMA866>3.0.CO;2-7.
[6] CAVALCANTI M,CAVALCANTI V.Global existence and uniform decay for the coupled Klein-Gordon-Schr?din ger equations[J].Nonlinear Differential Equations and Applications,2000,7(3):285-307.DOI:10.1007/PL0000 1426.
[7] HAYASHI N,WAHL W.On the global strong solutions of coupled Klein-Gordon-Schr?dinger equations[J].Journal of the Mathematical Society of Japan,1987,39(3):489-497.DOI:10.2969/jmsj/03930489.
[8] OHTA M.Stability of stationary states for the coupled Klein-Gordon-Schr?dinger equations[J].Nonlinear Analysis: Theory,Methods and Applications,1996,27(4):455-461.DOI:10.1016/0362-546X(95)00017-P.
[9] FUKUDA I,TSUTSUMI M.On the Yukawa-coupled Klein-Gordon-Schr?dinger equations in three space dimensions[J].Proceedings of the Japan Academy Series A Mathematical Sciences,1975,51(6):402-405.DOI:10.3792/pja/1195518563.
[10] XIA Jingna,HAN Shuxia,WANG Mingliang.The exact solitary wave solutions for the Klein-Gordon-Schr?dinger equations[J].Applied Mathematics and Mechanics,2002,23(1):58-64.DOI:10.1007/BF02437730.
[11] WANG Tingchun.Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schr? dinger equation[J].Journal of Mathematical Analysis and Applications,2014,412(1):155-167.DOI:10.1016/j.jmaa.2013.10.038.
[12] HONG Jialin,JIANG Shanshan,LI Chun.Explicit multi-symplectic methods for Klein-Gordon-Schr?dinger equations[J].Journal of Computational Physics,2009,228(9):3517-3532.DOI:10.1016/j.jcp.2009.02.006.
[13] WANG Junjie,XIAO Aiguo.Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schr?dinger equations[J].Applied Mathematics and Computation,2019,350:348-365.DOI:10.1016/j.amc.2018.12.046.
[14] WANG Tingchun,ZHAO Xiaofei,JIANG Jiaping.Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schr?dinger equation in high dimensions[J].Advances in Computational Mathematics,2018,44:477-503.DOI:10.1007/s10444-017-9557-5.
[15] ZHANG Luming.Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr?dinger equations in one space dimension[J].Applied Mathematics and Computation,2005,163(1):343-355.DOI:10.1016/j.amc.2004.02.010.
[16] KONG Linghua,WANG Lan,JIANG Shanshan,et al.Multi-symplectic Fourier pseudo-spectral integrators for Klei n-Gordon-Schr?dinger equations[J].Science China Mathematics,2013,56:915-932.DOI:10.1007/s11425-013-4575-3.
[17] XIANG Xinmin.Spectral method for solving the system of equations of Schr?dinger-Klein-Gordon field[J].Journal of Computational and Applied Mathematics,1988,21(2):161-171.DOI:10.1016/0377-0427(88)90265-8.
[18] WANG Tingchun,ZHAO Xiaofei.Unconditional L∞-convergence of two compact conservative finite difference schemes for the nonlinear Schr?dinger equation in multi-dimensions[J].Calcolo,2018,55(3):34-59.DOI:10.1007/s10092-018-0277-0.
[19] WANG Jialing,LIANG Dong,WANG Yushun.Analysis of a conservative high-order compact finite difference scheme for the Klein-Gordon-Schr?dinger equation[J].Journal of Computational and Applied Mathematics,2019,358:84-96.DOI:10.1016/j.cam.2019.02.018.
相似文献/References:
[1]孙传志,汪佳玲.非线性薛定谔方程的几种差分格式[J].华侨大学学报(自然科学版),2021,42(4):551.[doi:10.11830/ISSN.1000-5013.202011019]
SUN Chuanzhi,WANG Jialing.Several Difference Schemes for Nonlinear Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2021,42(1):551.[doi:10.11830/ISSN.1000-5013.202011019]