[1]林周瑾,汪佳玲,霍昱安.Klein-Gordon-Schr?dinger方程的几种差分格式及比较[J].华侨大学学报(自然科学版),2024,45(1):108-120.[doi:10.11830/ISSN.1000-5013.202306029]
 LIN Zhoujin,WANG Jialing,HUO Yuan.Several Difference Schemes and Comparisons for Klein-Gordon-Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2024,45(1):108-120.[doi:10.11830/ISSN.1000-5013.202306029]
点击复制

Klein-Gordon-Schr?dinger方程的几种差分格式及比较()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第1期
页码:
108-120
栏目:
出版日期:
2024-01-11

文章信息/Info

Title:
Several Difference Schemes and Comparisons for Klein-Gordon-Schr?dinger Equation
文章编号:
1000-5013(2024)01-0108-13
作者:
林周瑾 汪佳玲 霍昱安
南京信息工程大学 数学与统计学院, 江苏 南京 210044
Author(s):
LIN Zhoujin WANG Jialing HUO Yu’an
School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
关键词:
Klein-Gordon-Schr? dinger方程 向前Euler格式 Crank-Nicolson格式 紧差分格式 电荷守恒 能量守恒
Keywords:
Klein-Gordon-Schr? dinger equation forward Euler scheme Crank-Nicolson scheme compact difference scheme charge conservation energy conservation
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202306029
文献标志码:
A
摘要:
探究在特定的初值和边界条件下一维Klein-Gordon-Schr?dinger方程的几种差分格式并进行比较。利用经典的向前差分算子、中心差分算子、Crank-Nicolson方法和紧差分算子分别为Klein-Gordon-Schr?dinger方程构造向前Euler式、Crank-Nicolson格式及紧差分格式。结果表明:Crank-Nicolson格式及紧差分格式能够精确地保持离散电荷和能量守恒。数值实验验证了理论结果的正确性。
Abstract:
Several difference schemes of one-dimensional Klein-Gordon-Schr?dinger equation under specific initial value and boundary conditions are investigated and contrasted. The classical forward difference operator, central difference operator, Crank-Nicolson method and compact difference operator are used to construct forward Euler scheme, Crank-Nicolson scheme and compact difference scheme respectively. Results show that Crank-Nicolson scheme and the compact difference scheme can accurately conserve the discrete charge and energy conservation. The correctness of the theoretical result has been verified by numerical experiments.

参考文献/References:

[1] FUKUDA I,TSUTSUMI M.On coupled Klein-Gordon-Schr?dinger equations Ⅱ[J].Journal of Mathematical Analysis and Applications,1978,66(2):358-378.DOI:10.1016/0022-247X(78)90239-1.
[2] BAILLON J B,CHADAM J M.The cauchy problem for the coupled Schr?dinger-Klein-Gordon equations[J].North-Holland Mathematics Studies,1978,30:37-44.DOI:10.1016/S0304-0208(08)70857-0.
[3] DARWISH A,FAN Engui.A series of new explicit exact solutions for the coupled Klein-Gordon-Schr?dinger equations[J].Chaos,Solitons and Fractals,2004,20(3):609-617.DOI:10.1016/S0960-0779(03)00419-3.
[4] WANG Mingliang,ZHOU Yubin.The periodic wave solutions for the Klein-Gordon-Schr?dinger equations[J].Physics Letters A,2003,318(1/2):84-92.DOI:10.1016/j.physleta.2003.07.026.
[5] WANG Baoxiang.Classical global solutions for nonlinear Klein-Gordon-Schr?dinger equations[J].Mathematical Methods in the Applied Sciences,1997,20(7):599-616.DOI:10.1002/(SICI)1099-1476(19970510)20:7<599::AID-MMA866>3.0.CO;2-7.
[6] CAVALCANTI M,CAVALCANTI V.Global existence and uniform decay for the coupled Klein-Gordon-Schr?din ger equations[J].Nonlinear Differential Equations and Applications,2000,7(3):285-307.DOI:10.1007/PL0000 1426.
[7] HAYASHI N,WAHL W.On the global strong solutions of coupled Klein-Gordon-Schr?dinger equations[J].Journal of the Mathematical Society of Japan,1987,39(3):489-497.DOI:10.2969/jmsj/03930489.
[8] OHTA M.Stability of stationary states for the coupled Klein-Gordon-Schr?dinger equations[J].Nonlinear Analysis: Theory,Methods and Applications,1996,27(4):455-461.DOI:10.1016/0362-546X(95)00017-P.
[9] FUKUDA I,TSUTSUMI M.On the Yukawa-coupled Klein-Gordon-Schr?dinger equations in three space dimensions[J].Proceedings of the Japan Academy Series A Mathematical Sciences,1975,51(6):402-405.DOI:10.3792/pja/1195518563.
[10] XIA Jingna,HAN Shuxia,WANG Mingliang.The exact solitary wave solutions for the Klein-Gordon-Schr?dinger equations[J].Applied Mathematics and Mechanics,2002,23(1):58-64.DOI:10.1007/BF02437730.
[11] WANG Tingchun.Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schr? dinger equation[J].Journal of Mathematical Analysis and Applications,2014,412(1):155-167.DOI:10.1016/j.jmaa.2013.10.038.
[12] HONG Jialin,JIANG Shanshan,LI Chun.Explicit multi-symplectic methods for Klein-Gordon-Schr?dinger equations[J].Journal of Computational Physics,2009,228(9):3517-3532.DOI:10.1016/j.jcp.2009.02.006.
[13] WANG Junjie,XIAO Aiguo.Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schr?dinger equations[J].Applied Mathematics and Computation,2019,350:348-365.DOI:10.1016/j.amc.2018.12.046.
[14] WANG Tingchun,ZHAO Xiaofei,JIANG Jiaping.Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schr?dinger equation in high dimensions[J].Advances in Computational Mathematics,2018,44:477-503.DOI:10.1007/s10444-017-9557-5.
[15] ZHANG Luming.Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr?dinger equations in one space dimension[J].Applied Mathematics and Computation,2005,163(1):343-355.DOI:10.1016/j.amc.2004.02.010.
[16] KONG Linghua,WANG Lan,JIANG Shanshan,et al.Multi-symplectic Fourier pseudo-spectral integrators for Klei n-Gordon-Schr?dinger equations[J].Science China Mathematics,2013,56:915-932.DOI:10.1007/s11425-013-4575-3.
[17] XIANG Xinmin.Spectral method for solving the system of equations of Schr?dinger-Klein-Gordon field[J].Journal of Computational and Applied Mathematics,1988,21(2):161-171.DOI:10.1016/0377-0427(88)90265-8.
[18] WANG Tingchun,ZHAO Xiaofei.Unconditional L-convergence of two compact conservative finite difference schemes for the nonlinear Schr?dinger equation in multi-dimensions[J].Calcolo,2018,55(3):34-59.DOI:10.1007/s10092-018-0277-0.
[19] WANG Jialing,LIANG Dong,WANG Yushun.Analysis of a conservative high-order compact finite difference scheme for the Klein-Gordon-Schr?dinger equation[J].Journal of Computational and Applied Mathematics,2019,358:84-96.DOI:10.1016/j.cam.2019.02.018.

相似文献/References:

[1]孙传志,汪佳玲.非线性薛定谔方程的几种差分格式[J].华侨大学学报(自然科学版),2021,42(4):551.[doi:10.11830/ISSN.1000-5013.202011019]
 SUN Chuanzhi,WANG Jialing.Several Difference Schemes for Nonlinear Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2021,42(1):551.[doi:10.11830/ISSN.1000-5013.202011019]

备注/Memo

备注/Memo:
收稿日期: 2023-06-30
通信作者: 汪佳玲(1990-),女,副教授,博士,主要从事微分方程数值解的研究。E-mail:wangjialing@nuist.edu.cn。
基金项目: 国家自然科学基金青年基金资助项目(11801277)
更新日期/Last Update: 2024-01-20