[1]邵俊霞,胡春英,王建飞.双全纯映射的从属原理及其应用[J].华侨大学学报(自然科学版),2023,44(3):417-420.[doi:10.11830/ISSN.1000-5013.202205018]
 SHAO Junxia,HU Chunying,WANG Jianfei.Subordination Principle and Its Application of Biholomorphic Mappings[J].Journal of Huaqiao University(Natural Science),2023,44(3):417-420.[doi:10.11830/ISSN.1000-5013.202205018]
点击复制

双全纯映射的从属原理及其应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第3期
页码:
417-420
栏目:
出版日期:
2023-05-12

文章信息/Info

Title:
Subordination Principle and Its Application of Biholomorphic Mappings
文章编号:
1000-5013(2023)03-0417-04
作者:
邵俊霞 胡春英 王建飞
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
SHAO Junxia HU Chunying WANG Jianfei
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
多复变 双全纯映射 螺形映射 从属原理 Roper-Suffridge算子
Keywords:
several complex variables biholomorphic mapping spirallike mapping subordination principle Roper-Suffridge operator
分类号:
O174.56
DOI:
10.11830/ISSN.1000-5013.202205018
文献标志码:
A
摘要:
采用双曲度量的方法,给出多复变双全纯映射的从属原理.建立复平面上单连通区域D上的Roper-Suffridge算子,Roper-Suffridge算子保持β型螺形映射.结果表明:当D=Δ为单位圆盘时,主要结果推广了先前已知的结果.
Abstract:
Using hyperbolic metric method, we give the subordination principle of biholomorphic mappings in several complex variables, and establish Roper-Suffridge operators on simply connected domains D on complex planes, Roper-Suffridge operators preserve spirallike mappings of type β. The results show that when D=Δ is the unit disk, the main results generalize the previously known results.

参考文献/References:

[1] ROPER K A,SUFFRIDGE T J.Convex mappings on the unit ball of Cn[J].Journal dAnalyse Mathématique,1995,65(1):333-347.DOI:10.1007/BF02788776.
[2] GRAHAM I,KOHR G.Univalent mappings associated with the Roper-Suffridge extension operator[J].Journal dAnalyse Mathématique,2000,81(1):331-342.DOI:10.1007/BF02788995.
[3] GRAHAM I,HAMADA H,KOHR G,et al.Extension operators for locally univalent mappings[J].The Michigan Mathematical Journal,2002,50(1):37-56.DOI:10.1307/mmj/1022636749.
[4] 胡春英,王建飞.单位球Bn上的改进的Roper-Suffridge算子[J].华侨大学学报(自然科学版),2020,41(6):829-834.DOI:10.11830/ISSN.1000-5013.202006022.
[5] 朱春丹,陈正新.上三角矩阵李代数的反交换映射[J]. 福建师范大学学报(自然科学版),2019,35(4):1-6.DOI:10.12046/j.issn.1000-5277.2019.04.001.
[6] 王洁,林珍连,王建飞.B2上ɑ次殆星映射的一类有界构造[J].华侨大学学报(自然科学版),2020,41(1):126-129.DOI:10.11830/ISSN.1000-5013.201904046.
[7] 王建飞,刘太顺,唐笑敏.双曲度量和Roper-Suffridge算子[J].中国科学(数学),2022,52(4):369-380.DOI:10.1360/SSM-2020-0243.
[8] WANG Jianfei,LIU Taishun.The Roper-Suffridge extension operator and its applications to convex mappings in C2[J].Transactions of the American Mathematical Society,2018,370(11):7743-7759.DOI:10.1090/tran/7221.
[9] CUI Yanyan,WANG Chaojun,LIU Hao.The generalized Roper-Suffridge operator on the unit ball in complex Banach and Hilbert spaces[J].Acta Mathematica Scientia,2017,37(6):1817-1829.DOI:10.1016/S0252-9602(17)30109-1.
[10] ZHU Yucan,LIU Mingsheng.The generalized Roper-Suffridge extension operator in Banach spaces(Ⅲ)[J].Science in China(Series A: Mathematics),2009,52(11):2432-2446.DOI:10.1007/s11425-009-0191-7.
[11] LIU Xiaosong.The generalized Roper-Suffridge extension operator for some biholomorphic mappings[J].Journal of Mathematical Analysis and Applications,2006,324(1):604-614.DOI:10.1016/j.jmaa.2005.12.037.
[12] 史济怀.多复变函数论基础[M].北京,高等教育出版社,1996.
[13] BUCKHOLTZ J D,SUFFRIDGE T J.Complex analysis[M].Berlin:Springer-Verlag,1977.
[14] 冯淑霞,刘太顺,任广斌.复Banach空间单位球上几类映射的增长掩盖定理[J].数学年刊A辑,2007,28(2):215-230.DOI:10.3321/j.issn:1000-8134.2007.02.007.
[15] BEARDON F,MINDA D.The hyperbolic metric and geometric function theory[C]//Proceedings of the International Quasiconformal Mappings and Their Applications.New Delhi:Narosa Publishing House,2007:9-56.
[16] WANG Jianfei,ZHANG Danli.Extension operators for biholomorphic mappings[J].Canadian Mathematical Bulletin,2019,62(3):671-679.DOI:10.4153/CMB-2018-021-0.

相似文献/References:

[1]林雄,李锦成,王建飞.向量值全纯映射Schwarz引理的刚性[J].华侨大学学报(自然科学版),2023,44(6):777.[doi:10.11830/ISSN.1000-5013.202308007]
 LIN Xiong,LI Jincheng,WANG Jianfei.Rigidity of Schwarz Lemma for Vector-Valued Holomorphic Mappings[J].Journal of Huaqiao University(Natural Science),2023,44(3):777.[doi:10.11830/ISSN.1000-5013.202308007]

备注/Memo

备注/Memo:
收稿日期: 2022-05-01
通信作者: 胡春英(1979-),女,讲师,主要从事复分析的研究.E-mail:huchunying_79@sina.com.
基金项目: 国家自然科学基金资助项目(12071161, 11971165, 11971182); 福建省自然科学基金资助项目(2020J01073, 2019J01066); 福建省自然科学基金青年创新项目(2020J05157).
更新日期/Last Update: 2023-05-20