[1]胡启国,苏文.采用多目标粒子群-遗传算法的井筒钻孔机械臂臂长设计[J].华侨大学学报(自然科学版),2023,44(2):150-156.[doi:10.11830/ISSN.1000-5013.202209021]
 HU Qiguo,SU Wen.Arm Length Design of Wellbore Drilling Robotic Arm Using MOPSO-GA Optimization Algorithm[J].Journal of Huaqiao University(Natural Science),2023,44(2):150-156.[doi:10.11830/ISSN.1000-5013.202209021]
点击复制

采用多目标粒子群-遗传算法的井筒钻孔机械臂臂长设计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第2期
页码:
150-156
栏目:
出版日期:
2023-03-14

文章信息/Info

Title:
Arm Length Design of Wellbore Drilling Robotic Arm Using MOPSO-GA Optimization Algorithm
文章编号:
1000-5013(2023)02-0150-07
作者:
胡启国 苏文
重庆交通大学 机电与车辆工程学院, 重庆 400074
Author(s):
HU Qiguo SU Wen
School of Mechantronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
机械臂 井筒工程 参数优化 多目标粒子群-遗传算法(MOPSO-GA) 可达度
Keywords:
robotic arm wellbore engineering parameter optimization MOPSO-GA accessibility
分类号:
TD421;TP241.202
DOI:
10.11830/ISSN.1000-5013.202209021
文献标志码:
A
摘要:
为了解决井筒工程人工钻爆法施工突出问题,采用4自由度机械臂替代人工完成井底炮孔钻掘.首先,在无初始臂长参数下,通过算法获得一组结构参数小,在有限封闭作业空间内末端执行器可达位置范围大的臂长参数.然后,借助MDH(modified Denavit-Hartenberg)坐标运动学参数化正向建模,以末端位置包络线为约束逆向筛选,以臂长参数、可达度为目标,采用多目标粒子群-遗传算法(MOPSO-GA)进行参数寻优,得到若干组Pareto最优解集,并根据适应度选择最优参数结果.最后,对最优参数蒙特卡洛法和运动学进行仿真验证.结果表明:末端点云布于井底,包覆井筒钻孔工作区域,各臂运动学参数相对平稳,能够完成目标任务.
Abstract:
In order to solve the outstanding problems in the manual drilling and blasting method of wellbore engineering, a four degree of freedom robotic arm is used to replace manual work to complete the drilling of well bottom blasthole. Firstly, without the initial arm length parameters, a set of arm length parameters with small structural parameters and a large range of reachable end-effector positions in a finite enclosed operating space are obtained by the algorithm. Then, with the help of MDH(modified Denavit-Hartenberg)coordinate kinematic parametric forward modeling, reverse screening is performed with the end position envelope as the constraint, with the arm length parameters and accessibility as the goal, parameters optimization are achieved using multi-objective particle swarm optimization-genetic algorithm(MOPSO-GA), several sets of Pareto optimal solution sets are obtained, and the optimal parameter results are selected according to the fitness. Finally, the Monte Carlo method with optimal parameters and kinematics are simulated and verified. The results show that the end point cloud is distributed at the well bottom, covering the working area of the wellbore drilling, and the kinematic parameters of each arm are relatively stable, which can complete the task.

参考文献/References:

[1] 谭杰,刘志强,宋朝阳,等.我国矿山竖井凿井技术现状与发展趋势[J].金属矿山,2021(5):13-24.DOI:10.19614/j.cnki.jsks.202105002.
[2] 贾世元,贾英宏,徐世杰.基于姿态可操作度的机械臂尺寸优化方法[J].北京航空航天大学学报,2015,41(9):1693-1700.DOI:10.13700/j.bh.1001-5965.2014.0665.
[3] LEAL-NARANJO J A,CECCARELLI M,TORRES-SAN-MIGUEL C R,et al.Multi-objective optimization of a parallel manipulator for the design of a prosthetic arm using genetic algorithms[J].Latin American Journal of Solids and Structures,2018,15:217-243.DOI:10.1590/1679-78254044.
[4] 史旭东,庄立东,郭显鹏.基于PSO的6R装配机器人手臂刚度优化[J].组合机床与自动化加工技术,2016(10):40-43.DOI:10.13462/j.cnki.mmtamt.2016.10.011.
[5] LI Duanling,GUO Ying,BAI Qianyi,et al.New method for bar length optimization of serial robot based on point group[C]//12th IEEE Conference on Industrial Electronics and Applications.Siem Reab:IEEE Press,2017:1395-1399.DOI:10.1109/ICIEA.2017.8283057.
[6] 胡坤,何斌,张平,等.改进粒子群优化算法在潜艇深度控制系统的应用[J].控制工程,2021,28(6):1061-1068.DOI:10.14107/j.cnki.kzgc.20200813.
[7] 王粟,邱春辉,曾亮.自适应变异粒子群优化BP的短期风电功率预测模型[J].华侨大学学报(自然科学版),2020,41(1):90-95.DOI:10.11830/ISSN.1000-5013.201906031.
[8] 苗欣,李言民,江守亮,等.基于粒子群算法的磁悬浮列车控制参数优化[J].计算机仿真,2021,38(11):117-122.DOI:10.3969/j.issn.1006-9348.2021.11.024.
[9] 张鑫源,胡晓敏,林盈.遗传算法和粒子群优化算法的性能对比分析[J].计算机科学与探索,2014,8(1):90-102.DOI:10.3778/j.issn.1673-9418.1306035.
[10] 李宪华,石雪松,吕磊,等.基于全局可操作度的6R机械臂尺寸优化方法[J].系统仿真学报,2019,31(12):2569-2574.DOI:10.16182/j.issn1004731x.joss.19-0550.
[11] 王生亮,刘根友.一种非线性动态自适应惯性权重PSO算法[J].计算机仿真,2021,38(4):249-253,451.DOI:10.3969/j.issn.1006-9348.2021.04.050.
[12] 胡堂清,张旭秀,曹晓月.一种动态调整惯性权重的混合粒子群算法[J].电光与控制,2020,27(6):16-21.DOI:10.3969/j.issn.1671-637X.2020.06.004.
[13] 吴静,罗杨.动态调整惯性权重的粒子群算法优化[J].计算机系统应用,2019,28(12):184-188.DOI:10.15888/j.cnki.csa.007162.
[14] SUN Y,GAO Y.A multi-objective particle swarm optimization algorithm based on gaussian mutation and an improved learning strategy[J].Mathematics,2019,7(2):148-163.DOI:10.3390/MATH7020148.
[15] 杨路春,杨晨俊,汪志强,等.非可行解驱动进化算法和多元分析技术在船型参数优化中的应用[J].江苏科技大学学报(自然科学版),2017,31(2):136-142.DOI:10.3969/j.issn.1673-4807.2017.02.003.
[16] CHAUDHURY A N,GHOSAL A.Workspace of multi-fingered robotic hands using monte Carlo method[C]//3rd International and 18th National Conference on Machines and Mechanisms.Singapore:Springer,2018:317-327.

相似文献/References:

[1]黄吉祥,刘舒颖,黄辉,等.机械臂加工花岗岩的力和工具磨损特性[J].华侨大学学报(自然科学版),2018,39(2):159.[doi:10.11830/ISSN.1000-5013.201712065]
 HUANG Jixiang,LIU Shuying,HUANG Hui,et al.Forces and Tool Wear Characteristics in Granite Grinding by Robotic[J].Journal of Huaqiao University(Natural Science),2018,39(2):159.[doi:10.11830/ISSN.1000-5013.201712065]
[2]余乐,李庆,郑力新,等.六自由度机械臂运动轨迹自动生成方法仿真与实现[J].华侨大学学报(自然科学版),2018,39(3):355.[doi:10.11830/ISSN.1000-5013.201706082]
 YU Le,LI Qing,ZHENG Lixin,et al.Simulation and Relization of Motion Trajectory Automatic Generation Method of Six Degrees of Freedom Mechanical Arm[J].Journal of Huaqiao University(Natural Science),2018,39(2):355.[doi:10.11830/ISSN.1000-5013.201706082]
[3]曾伟鹏,邵辉,洪雪梅,等.采用非线性干扰观测器的机械臂补偿型滑模控制[J].华侨大学学报(自然科学版),2020,41(4):415.[doi:10.11830/ISSN.1000-5013.202001029]
 ZENG Weipeng,SHAO Hui,HONG Xuemei,et al.Compensated Sliding Mode Control of Manipulator Arm Using Nonlinear Disturbance Observer[J].Journal of Huaqiao University(Natural Science),2020,41(2):415.[doi:10.11830/ISSN.1000-5013.202001029]

备注/Memo

备注/Memo:
收稿日期: 2022-09-29
通信作者: 胡启国(1966-),男,教授,博士,主要从事机械系统动力学和可靠性设计与优化的研究.E-mail:swpihqg@163.com.
基金项目: 国家自然科学基金资助项目(51375519); 重庆市教委科学技术研究项目(KJZD-K202000703)
更新日期/Last Update: 2023-03-20