[1]林文华,房怀英,范璐璐,等.采用双相机多尺度方法的机制砂级配测量及空隙率预测[J].华侨大学学报(自然科学版),2022,43(3):285-290.[doi:10.11830/ISSN.1000-5013.202112021]
 LIN Wenhua,FANG Huaiying,FAN Lulu,et al.Gradation Measurement and Void Content Prediction of Manufactured Sand Using Dual Camera Multi-Scale Method[J].Journal of Huaqiao University(Natural Science),2022,43(3):285-290.[doi:10.11830/ISSN.1000-5013.202112021]
点击复制

采用双相机多尺度方法的机制砂级配测量及空隙率预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第3期
页码:
285-290
栏目:
出版日期:
2022-05-10

文章信息/Info

Title:
Gradation Measurement and Void Content Prediction of Manufactured Sand Using Dual Camera Multi-Scale Method
文章编号:
1000-5013(2022)03-0285-06
作者:
林文华1 房怀英1 范璐璐2 杨建红1
1. 华侨大学 机电及自动化学院, 福建 厦门 361021;2. 深圳市市政工程总公司, 广东 深圳 518000
Author(s):
LIN Wenhua1 FANG Huaiying1 FAN Lulu2 YANG Jianhong1
1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China; 2. Shenzhen City Municipal Engineering Controlling Corporation, Shenzhen 518000, China
关键词:
机制砂 机器视觉 多尺度 粒形 空隙率
Keywords:
manufactured sand machine vision multi-scale particle shape void content
分类号:
TU528.041;TP391.41
DOI:
10.11830/ISSN.1000-5013.202112021
文献标志码:
A
摘要:
为了解决图像法难以准确测量粒径为0.150 mm以下的机制砂颗粒的问题,设计双相机多尺度测量装置,并提出一种使用形态参数预测空隙率的方法.使用基础相机和精密相机搭建测量装置,基于该装置测量机制砂的粒形参数和粒径参数,通过实验数据构建空隙率预测模型.结果表明:双相机多尺度方法的最大级配测量误差为-2.57%,构建的随机森林模型最大空隙率预测误差为0.62%,测量精度满足工程要求.
Abstract:
In order to solve the problem that it is difficult to accurately measure manufactured sand particles with particle size less than 0.150 mm by image method,a dual camera multi-scale measuring device was designed, and a method of predicting void content using morphological parameters was proposed. The basic camera and precision camera were used to build the measuring device, the particle shape parameters and particle size parameters of manufactured sand were measured based on the device, and the void content prediction model was constructed through the experimental data. The results show that the maximum gradation measurement error of the dual camera multi-scale method is -2.57%, and the maximum void content prediction error of the constructed random forest model is 0.62%, the measurement accuracy of which meets the engineering requirements.

参考文献/References:

[1] 国家质量监督检验检疫总局.建设用砂: GB/T 14684-2011[S].北京:中国标准出版社,2011:1-28.
[2] RAJAN B,SINGH D.Understanding influence of crushers on shape characteristics of fine aggregates based on digital image and conventional techniques[J].Construction and Building Materials,2017,150:833-843.DOI:10.1016/j.conbuildmat.2017.06.058.
[3] 李北星,王威,陈梦义,等.粗骨料的等轴率、圆度和球度及其相互关系[J].建筑材料学报,2015,18(4):531-536.DOI:10.3969/j.issn.1007-9629.2015.04.001.
[4] ZHAO Lianheng,ZHANG Shuaihao,HUANG Dongliang,et al.A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate[J].Construction and Building Materials,2020,247:117906.DOI:10.1016/j.conbuildmat.2019.117906.
[5] NITKA M,TEJCHMAN J.A three-dimensional meso-scale approach to concrete fracture based on combined DEM with X-ray μCT images[J].Cement and Concrete Research,2018,107:11-29.DOI:10.1016/j.cemconres.2018.02.006.
[6] SU Dong,YAN Waiman.3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector[J].Powder Technology,2018,323:8-23.DOI:10.1016/j.powtec.2017.09.030.
[7] CEPURITIS R,GARBOCZI E,JACOBSEN S,et al.Comparison of 2-D and 3-D shape analysis of concrete aggregate fines from VSI crushing[J].Powder Technology,2016,309:110-125.DOI:10.1016/j.powtec.2016.12.037.
[8] MICROTRAC MRB.CAMSIZER</sup>○R X2: Particle size and shape analyzer[EB/OL].(2021-12-14)[2021-12-14] .https://www.microtrac.com/products/particle-size-shape-analysis/dynamic-image-analysis/camsizer-x2/function-features.
[9] 石立万,王端宜.基于数字图像处理的沥青混合料主骨架评价标准[J].中国公路学报,2017,30(5):52-58.DOI:10.3969/j.issn.1006-3897.2017.05.007.
[10] HASSAN H,WU Kuanghuai,HUANG Wenke,et al.Study on the influence of aggregate strength and shape on the performance of asphalt mixture[J].Construction and Building Materials,2021,294:123599.DOI:10.1016/j.conbuildmat.2021.123599.
[11] POURANIAN M,SHISHEHBOR M,HADDOCK J E.Impact of the coarse aggregate shape parameters on compaction characteristics of asphalt mixtures[J].Powder Technology,2020,363:369-386.DOI:10.1016/j.powtec.2020.01.014.
[12] SWAMY A,MATOLIA V,RAMANA G V.Interrelationship between uncompacted void content of aggregates and asphalt concrete properties[J].Particulate Science and Technology,2018,37(5):1-9.DOI:10.1080/02726351.2017.1414906.
[13] XIE Xiaoguang,LU Guoyang,LIU Pengfei,et al.Evaluation of morphological characteristics of fine aggregate in asphalt pavement[J].Construction and Building Materials,2017,139:1-8.DOI:10.1016/j.conbuildmat.2017.02.044.
[14] KOOHMISHI M,PALASSI M.Evaluation of morphological properties of railway ballast particles by image processing method[J].Transportation Geotechnics,2017,12:15-25.DOI:10.1016/j.trgeo.2017.07.001.
[15] MITCHELL T M.Machine learning[M].New York:McGraw Hill,1997.
[16] FAYED H,ATIYA A.Speed up grid-search for parameter selection of support vector machines[J].Applied Soft Computing,2019,80:202-210.DOI:10.1016/j.asoc.2019.03.037.

相似文献/References:

[1]谢超,谢明红.应用局部自适应阈值方法检测圆形标志点[J].华侨大学学报(自然科学版),2016,37(2):134.[doi:10.11830/ISSN.1000-5013.2016.02.0134]
 XIE Chao,XIE Minghong.Circular Mark Point Detecting Research Based on Local Adaptive Threshold[J].Journal of Huaqiao University(Natural Science),2016,37(3):134.[doi:10.11830/ISSN.1000-5013.2016.02.0134]
[2]郑晓玲,刘斌.采用机器视觉的铝压铸件表面缺陷检测[J].华侨大学学报(自然科学版),2016,37(2):139.[doi:10.11830/ISSN.1000-5013.2016.02.0139]
 ZHENG Xiaoling,LIU Bin.Surface Defect Detection of Aluminum Die Casting Using Machine Vision[J].Journal of Huaqiao University(Natural Science),2016,37(3):139.[doi:10.11830/ISSN.1000-5013.2016.02.0139]
[3]严小红.计算机视觉在条形码缺陷检测中的应用[J].华侨大学学报(自然科学版),2017,38(1):109.[doi:10.11830/ISSN.1000-5013.201701021]
 YAN Xiaohong.Application of Computer Vision in Defect Bar Code Detection[J].Journal of Huaqiao University(Natural Science),2017,38(3):109.[doi:10.11830/ISSN.1000-5013.201701021]
[4]杨栖凤,崔长彩,黄国钦.金刚石砂轮表面二维形貌全场测量和分析[J].华侨大学学报(自然科学版),2018,39(4):479.[doi:10.11830/ISSN.1000-5013.201711013]
 YANG Qifeng,CUI Changcai,HUANG Guoqin.Measurement and Analysis of Two-Dimensional Surface Topography of Whole Grinding Wheel[J].Journal of Huaqiao University(Natural Science),2018,39(3):479.[doi:10.11830/ISSN.1000-5013.201711013]
[5]蔡园园,房怀英,余文,等.采用数字图像处理的机制砂粒度级配检测方法[J].华侨大学学报(自然科学版),2019,40(5):567.[doi:10.11830/ISSN.1000-5013.201903009]
 CAI Yuanyuan,FANG Huaiying,YU Wen,et al.Digital Image Processing Based Particle Size Grading Measurement Method for Machine-Made Sand[J].Journal of Huaqiao University(Natural Science),2019,40(3):567.[doi:10.11830/ISSN.1000-5013.201903009]

备注/Memo

备注/Memo:
收稿日期: 2021-12-23
通信作者: 房怀英(1978-),女,教授,博士,主要从事高端机制砂装备的研究.E-mail:happen@hqu.edu.cn.
基金项目: 福建省高校产学合作项目(2020H6012, 2021H6029); 福建省科技重大专项专题(2020YZ01702); 广东省深圳市科技攻关项目(JSGG20201103100601004); 福建省泉州市科技计划项目(2021G05)
更新日期/Last Update: 2022-05-20