参考文献/References:
[1] WU Bo,LI Wei,QIU Mingquan.Remaining useful life prediction of bearing with vibration signals based on a novel indicator[J].Shock and Vibration,2017,2017:8927937(1-10).DOI:10.1155/2017/8927937.
[2] YAN Mingming,WANG Xingang,WANG Bingxiang,et al.Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model[J].ISA Transactions,2020,98:471-482.DOI:10.1016/j.isatra.2019.08.058.
[3] LIU Fang,LI Liubin,LIU Yongbin,et al.HKF-SVR optimized by krill herd algorithm for coaxial bearings performance degradation prediction[J].Sensors,2020,20:660(1-18).DOI:10.3390/s20030660.
[4] 葛阳,郭兰中,牛曙光,等.基于t-SNE和LSTM的旋转机械剩余寿命预测[J].振动与冲击,2020,39(7):223-231,273.DOI:10.13465/j.cnki.jvs.2020.07.031.
[5] JIANG J R,LEE J E,ZENG Yiming.Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life[J].Sensors,2019,20:166(1-19).DOI:10.3390/s20010166.
[6] LU Chao,CHEN Jie,HONG Rongjing,et al.Degradation trend estimation of slewing bearing based on LSSVM model[J].Mechanical Systems and Signal Processing,2016,76/77:353-366.DOI:10.1016/j.ymssp.2016.02.031.
[7] WU Zhaohua,HUANG N E.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.DOI:10.1142/S1793536909000047.
[8] HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris hawks optimization: Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.DOI:10.1016/j.future.2019.02.028.
[9] YOUSRI D,ALLAM D,ETEIBA M B.Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer[J].Energy Conversion and Management,2020,206:112470.DOI:10.1016/j.enconman.2020.112470.
[10] 赵世杰,高雷阜,于冬梅,等.融合能量周期性递减与牛顿局部增强的改进HHO算法[J].控制与决策,2021,36(3):629-636.DOI:10.13195/j.kzyjc.2019.0810.
[11] MOSSA M A,KAMEL O M,SULTAN H M,et al.Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms[J].Neural Computing and Applications,2021,33:5555-5570.DOI:10.1007/s00521-020-05333-4.
[12] GOUSSEAU W,ANTONI J,GIRARDIN F,et al.Analysis of the rolling element bearing data set of the center for intelligent maintenance systems of the university of Cincinnati[C]//Thirteenth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies.Charenton:HAL,2016:1-13.
[13] 李思琦,蒋志坚.基于EEMD-CNN的滚动轴承故障诊断方法[J].机械强度,2020,42(5):1033-1038.DOI:10.16579/j.issn.1001.9669.2020.05.003.
[14] 张成龙,郑凯,刘杰.基于小波包能量谱和改进FOA-GRNN的轴承寿命预测[J].组合机床与自动化加工技术,2020(7):73-76,80.DOI:10.13462/j.cnki.mmtamt.2020.07.016.
[15] HU Xiao,XIAO Zhihuai,LIU Dong,et al.KPCA and AE based local-global feature extraction method for vibration signals of rotating machinery[J].Mathematical Problems in Engineering,2020,2020:5804509(1-17).DOI:10.1155/2020/5804509.
[16] 者娜,杨剑锋,刘文彬,等.KPCA和改进SVM在滚动轴承剩余寿命预测中的应用研究[J].机械设计与制造,2019(11):1-4,8.DOI:10.19356/j.cnki.1001-3997.2019.11.001.