[1]陈剑涛,黄德天,陈健,等.改进的二阶龙格-库塔超分辨率算法[J].华侨大学学报(自然科学版),2022,43(1):127-134.[doi:10.11830/ISSN.1000-5013.202012009]
 CHEN Jiantao,HUANG Detian,CHEN Jian,et al.Improved Second-Order Runge-Kutta Super-Resolution Algorithm[J].Journal of Huaqiao University(Natural Science),2022,43(1):127-134.[doi:10.11830/ISSN.1000-5013.202012009]
点击复制

改进的二阶龙格-库塔超分辨率算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第1期
页码:
127-134
栏目:
出版日期:
2022-01-09

文章信息/Info

Title:
Improved Second-Order Runge-Kutta Super-Resolution Algorithm
文章编号:
1000-5013(2022)01-0127-08
作者:
陈剑涛 黄德天 陈健 朱显丞
华侨大学 工学院, 福建 泉州 362021
Author(s):
CHEN Jiantao HUANG Detian CHEN Jian ZHU Xiancheng
College of Engineering, Huaqiao university, Quanzhou 362021, China
关键词:
超分辨率 卷积神经网络 共享编码器 深度特征
Keywords:
super-resolution convolutional neural network shared encoder deep feature
分类号:
TP391
DOI:
10.11830/ISSN.1000-5013.202012009
文献标志码:
A
摘要:
提出一种改进的二阶龙格-库塔超分辨率算法.首先,提出一种浅层共享编码器,以实现低分辨率图像的浅层特征提取.其次,提出一种深层特征学习单元,并与基于龙格-库塔方法的残差模块相融合,进而构建出一种基于深层特征的残差模块,以提升深层特征提取能力.实验结果表明:与主流超分辨率算法相比,文中算法在主观视觉效果和客观评价指标方面都具有更好的效果.
Abstract:
An improved second-order Runge-Kutta super-resolution algorithm is proposed. Firstly, a shallow shared encoder is proposed to extract the shallow feature of low-resolution images. Secondly, a deep feature learning unit is proposed and further integrated with the residual module based on the Runge-Kutta method to construct a deep-feature-based residual module to improve the ability of deep feature extraction. Experimental results show that compared with the mainstream super-resolution algorithm, the algorithm proposed in this paper has better effect in subjective visual effect and objective evaluation index.

参考文献/References:

[1] LEI Sen,SHI Zhenwei,ZOU Zhengxia.Coupled adversarial training for remote sensing image super-resolution[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(5):3633-3643.DOI:10.1109/TGRS.2019.29590 20.
[2] LYU Qing,SHAN Hongming,WANG Ge.MRI super-resolution with ensemble learning and complementary priors[J].IEEE Transactions on Computational Imaging,2020,6:615-624.DOI:10.1109/TCI.2020.2964201.
[3] ZHU Jianqing,ZENG Huanqiang,HUANG Jingchang,et al.Vehicle re-identification using quadruple directional deep learning features[J].IEEE Transactions on Intelligent Transportation Systems,2020,21(1):410-420.DOI:10.1109/TITS.2019.2901312.
[4] CHEN Jin,CHEN Jun,WANG Zheng,et al.Identity-aware face super-resolution for low-resolution face recognition[J].IEEE Signal Processing Letters,2020,27:645-649.DOI:10.1109/LSP.2020.2986942.
[5] KEYS R.Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(6):1153-1160.DOI:10.1109/TASSP.1981.1163711.
[6] FATTAL R.Image upsampling via imposed edge statistics[J].ACM Transactions on Graphics,2007,26(3):95.DOI:10.1145/1276377.1276496.
[7] AKHTAR N,SHAFAIT F,MIAN A.Bayesian sparse representation for hyperspectral image super resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Press,2015:3631-3640.DOI:10.1109/CVPR.2015.7298986.
[8] ZHANG Kaibing,GAO Xinbo,TAO Dacheng,et al.Image super-resolution via non-local steering kernel regression regularization[C]//IEEE International Conference on Image Processing.Melbourne:IEEE Press,2013:943-946.DOI:10.1109/ICIP.2013.6738195.
[9] WANG Lingfeng,XIANG Shiming MENG Gaofeng,et al.Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation[J].IEEE Transactions on Circuits and Systems for Video Technology,2013,23(8):1289-1299.DOI:10.1109/TCSVT.2013.2240915.
[10] TIMOFTE R,DESMET V,VANGOOL L.A+: Adjusted anchored neighborhood regression for fast super-resolution[C]//Asian Conference on Computer Vision.Singapore:Springer,2014:111-126.DOI:10.1007/978-3-319-16817-3_8.
[11] YANG Jianchao,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.DOI:10.1109/TIP.2010.2050625.
[12] DONG Chao,LOY C C,HE Kaiming,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307.DOI:10.1109/TPAMI.2015.2439281.
[13] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:1646-1654.DOI:10.1109/CVPR.2016.182.
[14] DONG Chao,LOY C C,TANG Xiaoou.Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision.Amsterdam:Springer,2016:391-407.DOI:10.1007/978-3-319-46475-6_25.
[15] WAI Weisheng,HUANG Jiabin,AHUJA N,et al.Deep laplacian pyramid networks for fast and accurate super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:5835-5843.DOI:10.1109/CVPR.2017.618.
[16] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu:IEEE Press,2017:1132-1140.DOI:10.1109/CVPRW.2017.151.
[17] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:105-114.DOI:10.1109/CVPR.2017.19.
[18] HARIS M,SHAKHNAROVICH G,UKITA N.Deep back-projection networks for super-resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:1664-1673.DOI:10.1109/CVPR.2018.00179.
[19] ZHANG Yulun,LI Kunpeng,LI Kai,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision.Munich:Springer,2018:294-310.DOI:10.1007/978-3-030-01234-2_18.
[20] ZHANG Yulun,LI Kunpeng,LI Kai,et al.Residual non-local attention networks for image restoration[C]//International Conference on Learning Representations.New Orleans:[s.n.],2019:1-18.
[21] HE Xiangyu,MO Zitao, WANG Peisong, et al. ODE-inspired network design for single image super-resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:1732-1741.DOI:10.1109/CVPR.2019.00183.
[22] YE Xinchen,SUN Baoli,WANG Zhihui,et al.PMBANet: Progressive multi-branch aggregation network for scene depth super-resolution[J].IEEE Transactions on Image Processing,2020,29:7427-7442.DOI:10.1109/TIP.2020.3002664.
[23] YE Xinchen,SUN Baoli,WANG Zhihui,et al.Depth super-resolution via deep controllable slicing network[C]//Proceedings of the 28th ACM International Conference on Multimedia.Seattle:ACM,2020:1809-1818.DOI:10.1145/3394171.3413874.
[24] SALIMANS T,KINGMA D P.Weight normalization: A simple reparameterization to accelerate training of deep neural networks[C]//Advances in Neural Information Processing Systems.Barcelona:Curran Associates Inc,2016:901-909.

相似文献/References:

[1]吴琼,陈锻生.多尺度卷积循环神经网络的情感分类技术[J].华侨大学学报(自然科学版),2017,38(6):875.[doi:10.11830/ISSN.1000-5013.201606077]
 WU Qiong,CHEN Duansheng.Sentiment Classification With Multiscale Convolutional Recurrent Neural Network[J].Journal of Huaqiao University(Natural Science),2017,38(1):875.[doi:10.11830/ISSN.1000-5013.201606077]
[2]邹辉,杜吉祥,翟传敏,等.深度学习与一致性表示空间学习的跨媒体检索[J].华侨大学学报(自然科学版),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
 ZOU Hui,DU Jixiang,ZHAI Chuanmin,et al.Cross-Modal Multimedia Retrieval Based Deep Learning and Shared Representation Space Learning[J].Journal of Huaqiao University(Natural Science),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
[3]王改华,李涛,吕朦,等.采用无监督学习算法与卷积的图像分类模型[J].华侨大学学报(自然科学版),2018,39(1):146.[doi:10.11830/ISSN.1000-5013.201703109]
 WANG Gaihua,LI Tao,Lü Meng,et al.Image Classification Model Using Unsupervised Learning Algorithm and Convolution[J].Journal of Huaqiao University(Natural Science),2018,39(1):146.[doi:10.11830/ISSN.1000-5013.201703109]
[4]张建,彭佳林,杜吉祥.采用共享空间稀疏表示的单幅图像超分辨率方法[J].华侨大学学报(自然科学版),2018,39(2):268.[doi:10.11830/ISSN.1000-5013.201604051]
 ZHANG Jian,PENG Jialin,DU Jixiang.Single Image Super-Resolution Algorithm Using Sparse Representation in Common Space[J].Journal of Huaqiao University(Natural Science),2018,39(1):268.[doi:10.11830/ISSN.1000-5013.201604051]
[5]郑凌云,柳培忠,汪鸿翔.结合高斯核函数的卷积神经网络跟踪算法[J].华侨大学学报(自然科学版),2018,39(5):762.[doi:10.11830/ISSN.1000-5013.201702123]
 ZHENG Lingyun,LIU Peizhong,WANG Hongxiang.Convolution Neural Networks Tracking Algorithm Combined With Gaussian Kernel Function[J].Journal of Huaqiao University(Natural Science),2018,39(1):762.[doi:10.11830/ISSN.1000-5013.201702123]
[6]聂一亮,杜吉祥,杨麟.卷积特征图融合与显著性检测的图像检索[J].华侨大学学报(自然科学版),2018,39(6):937.[doi:10.11830/ISSN.1000-5013.201706028]
 NIE Yiliang,DU Jixiang,YANG Lin.Image Retrieval Based on Convolution Feature Map Fusion and Saliency Detection[J].Journal of Huaqiao University(Natural Science),2018,39(1):937.[doi:10.11830/ISSN.1000-5013.201706028]
[7]刘群,陈锻生.采用ACGAN及多特征融合的高光谱遥感图像分类[J].华侨大学学报(自然科学版),2019,40(1):113.[doi:10.11830/ISSN.1000-5013.201710006]
 LIU Qun,CHEN Duansheng.Classification of Hyperspectral Remote Sensing Images Using ACGAN and Fusion of Multifeature[J].Journal of Huaqiao University(Natural Science),2019,40(1):113.[doi:10.11830/ISSN.1000-5013.201710006]
[8]张圣祥,郑力新,朱建清,等.采用深度学习的快速超分辨率图像重建方法[J].华侨大学学报(自然科学版),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
 ZHANG Shengxiang,ZHENG Lixin,ZHU Jianqing,et al.Fast Super-Resolution Image Reconstruction Method Using Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(1):245.[doi:10.11830/ISSN.1000-5013.201804064]
[9]吴晨茜,陈锻生.表情符向量化算法[J].华侨大学学报(自然科学版),2019,40(3):399.[doi:10.11830/ISSN.1000-5013.201803011]
 WU Chenxi,CHEN Duansheng.Emoticon Vectorization Algrorithm[J].Journal of Huaqiao University(Natural Science),2019,40(1):399.[doi:10.11830/ISSN.1000-5013.201803011]
[10]邱德府,郑力新,谢炜芳,等.深度学习下的高效单幅图像超分辨率重建方法[J].华侨大学学报(自然科学版),2019,40(5):668.[doi:10.11830/ISSN.1000-5013.201905029]
 QIU Defu,ZHENG Lixin,XIE Weifang,et al.Efficient Single Image Super-Resolution Reconstruction Method Under Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(1):668.[doi:10.11830/ISSN.1000-5013.201905029]

备注/Memo

备注/Memo:
收稿日期: 2020-12-02
通信作者: 黄德天(1985-),男,副教授,博士,主要从事计算机视觉、深度学习和嵌入式系统的研究.E-mail:huangdetian@hqu.edu.cn.
基金项目: 国家自然科学基金青年科学基金资助项目(61901183); 福建省自然科学基金面上资助项目(2019-J01083); 华侨大学研究生科研创新能力培育计划资助项目(18014084001)
更新日期/Last Update: 2022-01-20