参考文献/References:
[1] KHWAJA A S,ZHANG Xiaoying,ANPALAGAN A,et al.Boosted neural networks for improved short-term electric load forecasting[J].Electric Power Systems Research,2017,143:431-437.DOI:10.1016/j.epsr.2016.10.067.
[2] 夏家盛,吉培荣.负荷预测指数平滑法“厚近薄远”规律研究[J].电力学报,2019,34(1):23-29.DOI:10.13357/j.cnki.jep.002770.
[3] 甘中学,喻想想,许裕栗,等.基于周期性ARMA-SVR模型的空调冷热负荷预测[J].控制工程,2020,27(2):380-385.DOI:10.14107/j.cnki.kzgc.170759.
[4] 俱鑫,刘尚科,苟瑞欣,等.基于ARMA和Kalman Filter的需求响应基线负荷预测[J].电子设计工程,2020,28(18):175-180.DOI:10.14022/j.issn1674-6236.2020.18.039.
[5] MOEENI H,BONAKDARI H.Impact of normalization and input on ARMAX-ANN model performance in suspended sediment load prediction[J].Water Resources Management,2018,32(3):1-19.DOI:10.1007/s11269-017-1842-z.
[6] 邢晓敏,何铁新,郑雪瑞,等.基于ANN-dropout的配电网可靠性预测方法[J].南方电网技术,2019,13(2):66-73.DOI:10.13648/j.cnki.issn1674-0629.2019.02.010.
[7] 陈亮,王震,王刚.深度学习框架下LSTM网络在短期电力负荷预测中的应用[J].电力信息与通信技术,2017,15(5):8-11.DOI:10.16543/j.2095-641x.electric.power.ict.2017.05.002.
[8] 张宇帆,艾芊,林琳,等.基于深度长短时记忆网络的区域级超短期负荷预测方法[J].电网技术,2019,43(6):1884-1892.DOI:10.13335/j.1000-3673.pst.2018.2101.
[9] RAHMAN A,SRIKUMAR V,SMITH A D.Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks[J].Applied Energy,2018,212:372-385.DOI:10.1016/j.apenergy.2017.12.051.
[10] 李鹏,何帅,韩鹏飞.基于长短期记忆的实时电价条件下智能电网短期负荷预测[J].电网技术,2018,42(12):4045-4052.DOI:10.13335/j.1000-3673.pst.2018.0433.
[11] 黄发良,连亚飞.Senti-LSTM: 一个基于递归神经网络的情感分析模型[J].福建师范大学学报(自然科学版),2020,36(1):12-18.DOI:10.12046/j.issn.1000-5277.2020.01.003.
[12] KANG Ke,SUN Hongbin,ZHANG Chengkang,et al.Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network[J].Evolutionary Intelligence,2019,12(3):385-394.DOI:10.1007/s12065-018-00196-0.
[13] 姚程文,杨苹,刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术,2020,44(9):3416-3424.DOI:10.13335/j.1000-3673.pst.2019.2058.
[14] 魏骜,茅大钧,韩万里,等.基于EMD和长短期记忆网络的短期电力负荷预测研究[J].热能动力工程,2020,35(4):203-209.DOI:10.16146/j.cnki.rndlgc.2020.04.028.
[15] 汤庆峰,刘念,张建华,等.基于EMD-KELM-EKF与参数优选的用户侧微电网短期负荷预测方法[J].电网技术,2014,38(10):2691-2699.DOI:10.13335/j.1000-3673.pst.2014.10.012.
[16] BEDI J,TOSHNIWAL D.Empirical mode decomposition based deep learning for electricity demand forecasting[J].IEEE Access,2018,6:49144-49156.DOI:10.1109/ACCESS.2018.2867681.
[17] 彭文,王金睿,尹山青.电力市场中基于Attention-LSTM的短期负荷预测模型[J].电网技术,2019,43(5):745-751.DOI:10.13335/j.1000-3673.pst.2018.1554.
[18] 赵兵,王增平,纪维佳,等.基于注意力机制的CNN-GRU短期电力负荷预测方法[J].电网技术,2019,43(12):4370-4376.DOI:10.13335/j.1000-3673.pst.2019.1524.
[19] 李昭昱,艾芊,张宇帆,等.基于Attention机制的LSTM神经网络超短期负荷预测方法[J].供用电,2019,36(1):17-22.DOI:10.19421/j.cnki.1006-6357.2019.01.003.
相似文献/References:
[1]李志农,刘立州.分数阶经验模态分解方法在机械故障诊断中应用[J].华侨大学学报(自然科学版),2010,31(4):367.[doi:10.11830/ISSN.1000-5013.2010.04.0367]
LI Zhi-nong,LIU Li-zhou.Application of the Method of Fractional Empirical Mode Decomposition to Machine Fault Diagnosis[J].Journal of Huaqiao University(Natural Science),2010,31(6):367.[doi:10.11830/ISSN.1000-5013.2010.04.0367]
[2]陈建灿,刘晓梅.运用EMD分形盒维数的电梯机械故障诊断[J].华侨大学学报(自然科学版),2013,34(5):494.[doi:10.11830/ISSN.1000-5013.2013.05.0494]
CHEN Jian-can,LIU Xiao-mei.Application of EMD and Box Dimension in Fault Diagnosis of Elevator Machinery[J].Journal of Huaqiao University(Natural Science),2013,34(6):494.[doi:10.11830/ISSN.1000-5013.2013.05.0494]