[1]孙传志,汪佳玲.非线性薛定谔方程的几种差分格式[J].华侨大学学报(自然科学版),2021,42(4):551-560.[doi:10.11830/ISSN.1000-5013.202011019]
 SUN Chuanzhi,WANG Jialing.Several Difference Schemes for Nonlinear Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2021,42(4):551-560.[doi:10.11830/ISSN.1000-5013.202011019]
点击复制

非线性薛定谔方程的几种差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第4期
页码:
551-560
栏目:
出版日期:
2021-07-20

文章信息/Info

Title:
Several Difference Schemes for Nonlinear Schr?dinger Equation
文章编号:
1000-5013(2021)04-0551-10
作者:
孙传志 汪佳玲
南京信息工程大学 数学与统计学院, 江苏 南京 210044
Author(s):
SUN Chuanzhi WANG Jialing
School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
关键词:
非线性薛定谔方程 向前Euler格式 Crank-Nicolson格式 紧致差分格式 质量守恒 能量守恒
Keywords:
nonlinear Schr? dinger equation forward Euler scheme Crank-Nicolson scheme compact difference scheme mass conservation energy conservation
分类号:
O241.81
DOI:
10.11830/ISSN.1000-5013.202011019
文献标志码:
A
摘要:
在满足一定的初值、边值条件下,结合不同的差分格式对非线性薛定谔(NLS)方程进行数值求解.分别利用经典的向前差分算子、二阶中心差分算子、Crank-Nicolson方法和紧致差分算子构造向前Euler格式、Crank-Nicolson格式和紧致差分格式,并证明Crank-Nicolson格式和紧致差分格式精确保持离散质量守恒和能量守恒.利用数学软件MATLAB进行实验计算,结果表明:所构造的3种格式具有合理性及有效性.
Abstract:
Under the condition of initial value and boundary value, the nonlinear Schr?dinger(NLS)equation numerical solution is solved by different difference schemes. The forward Euler scheme, the Crank-Nicolson scheme and the compact difference scheme are constructed by using the classical forward difference operator, the second-order central difference operator, the Crank-Nicolson method and the compact difference operator. It is proved that the Crank-Nicolson scheme and the compact difference scheme keep the conservation of discrete mass and energy accurately. Carrying out experimontal calculation by using mathematical software MATLAB, we find that the three schemes constructed are reasonable and effective.

参考文献/References:

[1] 张云峰.一类低维广义非线性Schr?dinger方程解的研究[J].兰州工业高等专科学校学报,2003,10(2):1-4.
[2] 孟佳.一类非线性薛定谔方程的数值解法[D].开封:河南大学,2015.
[3] BORHANIFAR A,ABAZARI R.Numerical study of nonlinear Schr?dinger and coupled Schr?dinger equations by differential transformation method[J].Optics Communications,2010,283(10):2026-2032.DOI:10.1016/j.optcom.2010.01.046.
[4] ASHYRALYEV A,HICDURMAZ B.On the numerical solution of fractional Schr?dinger differential equations with the Dirichlet condition[J].International Journal of Computer Mathematics,2012,89(13/14):1927-1936.DOI:10.1080/00207160.2012.698841.
[5] ZISOWSKY A,EHRHARDT M.Discrete artificial boundary conditions for nonlinear Schr?dinger equations[J].Computational Mathematics and Modeling,2008,47(11):1264-1283.DOI:10.1016/j.mcm.2007.07.007.
[6] 孙志忠.偏微分方程数值解法[M].北京:科学出版社,2005.
[7] 王海,黄金辉,屈凤林,等.理论地质模型的声波波场数值模拟[J].煤,2011,20(3):3-5.DOI:10.3969/j.issn.1005-2798.2011.03.002.
[8] 吴宏伟.一类半线性抛物型方程的紧致差分格式[J].应用数学,2007,20(2):421-426.DOI:10.3969/j.issn.1001-9847.2007.02.031.
[9] 李华,周维奎,邓培智.Crank-Nicolson差分格式及其稳定性研究[J].矿物岩石,1998(增刊1):239- 242.
[10] SONNIER W J,CHRISTOV C I.Strong coupling of Schr?dinger equations: Conservative scheme approach[J].Mathematics and Computers in Simulation,2005,69(5/6):514-525.DOI:10.1016/j.matcom.2005.03.016.
[11] SUN Zhizhong,ZHAO Dandan.On the L convergence of a difference scheme for coupled nonlinear Schr?dinger equations[J].Computers and Mathematics with Applications,2010,59(10):3286-3300.DOI:10.1016/j.camwa.2010.03.012.
[12] WANG Tingchun.Optimal point-wise error estimate of a compact finite difference scheme for the coupled nonlinear Schr?dinger equations[J].Journal of Computational Mathematics,2014,32(10):58-74.DOI:10.1016/10.1016/j.jmaa.2013.10.038.
[13] PATEL K S,MANI M.A numerical study of Asian option with high-order compact finite difference scheme[J].Journal of Applied Mathematics and Computing,2018,57(1/2):467-491.DOI:10.1007/s12190-017-1115-2.
[14] WANG Yushun,HONG Jialin.Multi-symplectic algorithms for Hamiltonian partial differential equations[J].Communication on Applied Mathematics and Computation,2013,27(2):163-230.DOI:10.3969/j.issn.1006-6330.2013.02.001.
[15] STRAUSS W,VáZQUEZ L.Numericla solution of a nonlinear Klein-Gorden equation[J].Journal of Computational Physics,1978,28(2):271-278.DOI:10.1016/0021-9991(78)90038-4.
[16] 郭本瑜,VáZQUEZ L.非线性Klein-Gordon方程的数值解[J].应用科学学报,1983(1):25-32.
[17] GUO Benyu,PASCUAL P J.Numerical solution of the Sine-Gordon equation[J].Applied Mathematics and Computation,1986,18(1):1-14.DOI:10.1016/0096-3003(86)90025-1.
[18] 张鲁明,常谦顺.非线性Schr?diger方程初边值问题的守恒数值格式[J].数学物理学报,2000,20(2):240-245.DOI:10.3321/j.issn:1003-3998.2000.02.015.
[19] 张鲁明,常谦顺.非线性Schr?diger方程的一个新的守恒差分格式[J].高校应用数学学报:A辑,2000,15(1):72-78.DOI:10.3969/j.issn.1000-4424.2000.01.012.
[20] Lü Zhongquan,ZHANG Luming,WANG Yushun.A conservative Fourier pseudospectral algorithm for the nonlinear Schr?diger equation[J].Chinese Physics B,2014,23(12):120203.DOI:10.1088/1674-1056/23/12120203.
[21] ISMAIL M S,TAHA T R.A linearly implicit conservative scheme for the coupled nonlinear Schr?diger equation[J].Mathematics and Computers in Simulation,2007,74(4/5):302-311.DOI:10.1016/j.matcom.2006.10.020.
[22] WANG Jialing,WANG Yushun.Numerical analysis of a new conservative scheme for the coupled nonlinear Schr?dinger equations[J].International Journal of Computer Mathematics,2018,95(8):1583-1608.DOI:10.1080/00207160.2017.1322692.
[23] WANG Tingchun.Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schr?dinger equations[J].Journal of Computational and Applied Mathematics,2011,235(14/15):4237-4250.DOI:10.1016/j.cam.2011.03.019.
[24] WANG Tingchun,GUO Bolin,XU Qiubin.Fourth-order compact and energy conservative difference schemes for the nonlinear Schr?dinger equations in two dimensions[J].Journal of Computational Physics,2013,243(15):382-399.DOI:10.1016/j.jcp.2013.03.007.
[25] HONG Jialin,JI Lihai,KONG Linghua,et al.Optimal error estimate of a compact scheme for nonlinear Schr?dinger equation[J].Applied Numerical Mathematics,2017,120:68-81.DOI:10.1016/j.apnum.2017.05.004.
[26] WANG Tingchun,ZHAO Xiaofei.Unconditional L convergence of two compact conservative finite difference schemes for the nonlinear Schr?dinger equation in multi-dimensions[J].Calcolo,2018,55(3):34-59.DOI:10.1007/s10092-018-0277-0.
[27] GONG Yuezheng,WANG Qi,WANG Yushun,et al.A conservative Fourier pseudo-spectral method for the nonlinear Schr?dinger equation[J].Journal of Computational Physics,2017,328:354-370.DOI:10.1016/j.jcp.2016.10.022.
[28] HE Yang.Conservative local discontinuous Galerkin methods for the cubic-quintic nonlinear Schr?dinger equation[J].Optik,2020,226(1):165821.DOI:10.1016/j.ijleo.2020.165821.
[29] CUI Jin,XU Zhuangzhi,WANG Yushun,et al.Mass-and energy-preserving exponential Runge-Kutta methods for the nonlinear Schr?dinger equation[J].Applied Mathematics Letters,2020,112:106770.DOI:10.1016/j.aml.2020.106770.
[30] WANG Tingchun,WANG Jialing,GUO Bolin.Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schr?dinger equation[J].Journal of Computational Physics,2019,404:109116.DOI:10.1016/J/JCP.2019.109116.

相似文献/References:

[1]林周瑾,汪佳玲,霍昱安.Klein-Gordon-Schr?dinger方程的几种差分格式及比较[J].华侨大学学报(自然科学版),2024,45(1):108.[doi:10.11830/ISSN.1000-5013.202306029]
 LIN Zhoujin,WANG Jialing,HUO Yuan.Several Difference Schemes and Comparisons for Klein-Gordon-Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2024,45(4):108.[doi:10.11830/ISSN.1000-5013.202306029]

备注/Memo

备注/Memo:
收稿日期: 2020-11-12
通信作者: 汪佳玲(1990-),讲师,博士,主要从事微分方程数值解的研究.E-mail:wjl19900724@126.com.
基金项目: 国家自然科学基金青年基金资助项目(11801277); 南京信息工程大学科研启动项目(2017r090)
更新日期/Last Update: 2021-07-20