参考文献/References:
[1] 张云峰.一类低维广义非线性Schr?dinger方程解的研究[J].兰州工业高等专科学校学报,2003,10(2):1-4.
[2] 孟佳.一类非线性薛定谔方程的数值解法[D].开封:河南大学,2015.
[3] BORHANIFAR A,ABAZARI R.Numerical study of nonlinear Schr?dinger and coupled Schr?dinger equations by differential transformation method[J].Optics Communications,2010,283(10):2026-2032.DOI:10.1016/j.optcom.2010.01.046.
[4] ASHYRALYEV A,HICDURMAZ B.On the numerical solution of fractional Schr?dinger differential equations with the Dirichlet condition[J].International Journal of Computer Mathematics,2012,89(13/14):1927-1936.DOI:10.1080/00207160.2012.698841.
[5] ZISOWSKY A,EHRHARDT M.Discrete artificial boundary conditions for nonlinear Schr?dinger equations[J].Computational Mathematics and Modeling,2008,47(11):1264-1283.DOI:10.1016/j.mcm.2007.07.007.
[6] 孙志忠.偏微分方程数值解法[M].北京:科学出版社,2005.
[7] 王海,黄金辉,屈凤林,等.理论地质模型的声波波场数值模拟[J].煤,2011,20(3):3-5.DOI:10.3969/j.issn.1005-2798.2011.03.002.
[8] 吴宏伟.一类半线性抛物型方程的紧致差分格式[J].应用数学,2007,20(2):421-426.DOI:10.3969/j.issn.1001-9847.2007.02.031.
[9] 李华,周维奎,邓培智.Crank-Nicolson差分格式及其稳定性研究[J].矿物岩石,1998(增刊1):239- 242.
[10] SONNIER W J,CHRISTOV C I.Strong coupling of Schr?dinger equations: Conservative scheme approach[J].Mathematics and Computers in Simulation,2005,69(5/6):514-525.DOI:10.1016/j.matcom.2005.03.016.
[11] SUN Zhizhong,ZHAO Dandan.On the L∞ convergence of a difference scheme for coupled nonlinear Schr?dinger equations[J].Computers and Mathematics with Applications,2010,59(10):3286-3300.DOI:10.1016/j.camwa.2010.03.012.
[12] WANG Tingchun.Optimal point-wise error estimate of a compact finite difference scheme for the coupled nonlinear Schr?dinger equations[J].Journal of Computational Mathematics,2014,32(10):58-74.DOI:10.1016/10.1016/j.jmaa.2013.10.038.
[13] PATEL K S,MANI M.A numerical study of Asian option with high-order compact finite difference scheme[J].Journal of Applied Mathematics and Computing,2018,57(1/2):467-491.DOI:10.1007/s12190-017-1115-2.
[14] WANG Yushun,HONG Jialin.Multi-symplectic algorithms for Hamiltonian partial differential equations[J].Communication on Applied Mathematics and Computation,2013,27(2):163-230.DOI:10.3969/j.issn.1006-6330.2013.02.001.
[15] STRAUSS W,VáZQUEZ L.Numericla solution of a nonlinear Klein-Gorden equation[J].Journal of Computational Physics,1978,28(2):271-278.DOI:10.1016/0021-9991(78)90038-4.
[16] 郭本瑜,VáZQUEZ L.非线性Klein-Gordon方程的数值解[J].应用科学学报,1983(1):25-32.
[17] GUO Benyu,PASCUAL P J.Numerical solution of the Sine-Gordon equation[J].Applied Mathematics and Computation,1986,18(1):1-14.DOI:10.1016/0096-3003(86)90025-1.
[18] 张鲁明,常谦顺.非线性Schr?diger方程初边值问题的守恒数值格式[J].数学物理学报,2000,20(2):240-245.DOI:10.3321/j.issn:1003-3998.2000.02.015.
[19] 张鲁明,常谦顺.非线性Schr?diger方程的一个新的守恒差分格式[J].高校应用数学学报:A辑,2000,15(1):72-78.DOI:10.3969/j.issn.1000-4424.2000.01.012.
[20] Lü Zhongquan,ZHANG Luming,WANG Yushun.A conservative Fourier pseudospectral algorithm for the nonlinear Schr?diger equation[J].Chinese Physics B,2014,23(12):120203.DOI:10.1088/1674-1056/23/12120203.
[21] ISMAIL M S,TAHA T R.A linearly implicit conservative scheme for the coupled nonlinear Schr?diger equation[J].Mathematics and Computers in Simulation,2007,74(4/5):302-311.DOI:10.1016/j.matcom.2006.10.020.
[22] WANG Jialing,WANG Yushun.Numerical analysis of a new conservative scheme for the coupled nonlinear Schr?dinger equations[J].International Journal of Computer Mathematics,2018,95(8):1583-1608.DOI:10.1080/00207160.2017.1322692.
[23] WANG Tingchun.Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schr?dinger equations[J].Journal of Computational and Applied Mathematics,2011,235(14/15):4237-4250.DOI:10.1016/j.cam.2011.03.019.
[24] WANG Tingchun,GUO Bolin,XU Qiubin.Fourth-order compact and energy conservative difference schemes for the nonlinear Schr?dinger equations in two dimensions[J].Journal of Computational Physics,2013,243(15):382-399.DOI:10.1016/j.jcp.2013.03.007.
[25] HONG Jialin,JI Lihai,KONG Linghua,et al.Optimal error estimate of a compact scheme for nonlinear Schr?dinger equation[J].Applied Numerical Mathematics,2017,120:68-81.DOI:10.1016/j.apnum.2017.05.004.
[26] WANG Tingchun,ZHAO Xiaofei.Unconditional L∞ convergence of two compact conservative finite difference schemes for the nonlinear Schr?dinger equation in multi-dimensions[J].Calcolo,2018,55(3):34-59.DOI:10.1007/s10092-018-0277-0.
[27] GONG Yuezheng,WANG Qi,WANG Yushun,et al.A conservative Fourier pseudo-spectral method for the nonlinear Schr?dinger equation[J].Journal of Computational Physics,2017,328:354-370.DOI:10.1016/j.jcp.2016.10.022.
[28] HE Yang.Conservative local discontinuous Galerkin methods for the cubic-quintic nonlinear Schr?dinger equation[J].Optik,2020,226(1):165821.DOI:10.1016/j.ijleo.2020.165821.
[29] CUI Jin,XU Zhuangzhi,WANG Yushun,et al.Mass-and energy-preserving exponential Runge-Kutta methods for the nonlinear Schr?dinger equation[J].Applied Mathematics Letters,2020,112:106770.DOI:10.1016/j.aml.2020.106770.
[30] WANG Tingchun,WANG Jialing,GUO Bolin.Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schr?dinger equation[J].Journal of Computational Physics,2019,404:109116.DOI:10.1016/J/JCP.2019.109116.