参考文献/References:
[1] TAMAS V,MATIES V,NNEBE S E,et al.Real-time distracted drivers detection using deep learning[J].American Journal of Artificial Intelligence,2019,3(1):1-8.
[2] 吴绍斌,高利,王刘安.基于脑电信号的驾驶疲劳检测研究[J].北京理工大学学报,2009,29(12):1072-1075.DOI:10.15918/j.tbi t1001-0645.2009.12.013.
[3] JAP B T,LAL S,FISCHER P,et al.Using EEG spectral components to assess algorithms for detecting fatigue[J].Expert Systems with Applications,2009,36(2):2352-2359.DOI:10.1016/j.eswa.2007.12.043.
[4] LI Mingai,ZHANG Cheng,YANG Jinfu.An EEG-based method for detecting drowsy driving state[C]//Seventh International Conference on Fuzzy Systems and Knowledge Discovery.Yantai: IEEE Press,2010:2164-2167.DOI:10.1109/FSKD.2010.5569757.
[5] 王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J].公路交通科技,2005,22(12):116-121,142.DOI:10.3969/j.issn.1002-0268.2005.12.030.
[6] ZHAO C H,ZHANG Bailing,HE Jie,et al.Recognition of driving postures by contourlet transform and random forests[J].IET Intelligent Transport Systems,2012,6(2):161-168.DOI:10.1049/iet-its.2011.0116
[7] BERRI R A,SILVA A G,PARPINELLI R S,et al.A pattern recognition system for detecting use of mobile phones while driving[C]//International Conference on Computer Vision Theory and Applications(VISAPP).Lisbon: IEEE Press,2014:411-418.DOI:10.5220/0004684504110418.
[8] CRAYE C,KARRAY F.Driver distraction detection and recognition using RGB-D sensor[J/OL].eprint arXiv: 1502.00250,2015:1-11.[2015-02-01] .http://de.arxiv.org/pdf/1502.00250.
[9] LE T H N,ZHENG Yutong,ZHU Chenchen,et al.Multiple scale faster-rcnn approach to driver’s cell-phone usage and hands on steering wheel detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Las Vegas: IEEE Press,2016:46-53.DOI:10.1109/CVPRW.2016.13.
[10] RUIZ N,CHONG E,REHG J M.Fine-grained head pose estimation without keypoints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Salt Lake City: IEEE Press,2018:2074-2083.DOI:10.1109/CVPRW.2018.00281.
[11] SIMARD P Y,STEINKRAUS D,PLATT J C.Best practices for convolutional neural networks applied to visual document analysis[C]//Seventh International Conference on Document Analysis and Recognition.Edinburgh: IEEE Press,2003.DOI:10.1109/ICDAR.2003.1227801.
[12] LIN Ming,CHEN Qiang,YAN Shuicheng.Network in network[EB/OL].(2013-12-16)[2014-03-04] .https://arxiv.org/abs/1312.4400.
[13] CHOLLET F.Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Puerto Rico: IEEE Press,2017:1251-1258.DOI:10.1109/CVPR.2017.195.
[14] BAHETI B,GAJRE S,TALBAR S.Detection of distracted driver using convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Salt Lake City: IEEE Press,2018.DOI:10.1109/CVPRW.2018.00150.
[15] SANG Haifeng,WANG Chuanzheng,HE Dakuo,et al.Multi-information flow CNN and attribute-aided reranking for person reidentification[J/OL].Computational Intelligence and Neuroscience,2019:1-12.http://downloads.hindawi.com/journals/cin/2019/7028107.pdf.DOI:10.1155/2019/7028107.
[16] LI Xiaoguang,LAM K M,QIU G P,et al.Examplebased image super-resolution with class-speciflc predictors[J].Journal of Visual Communication and Image Representation,2009,20(5):312-322.DOI:10.1016/j.jvcir.2009.03.008.
[17] NIE Weizhi,WANG Kun,WANG Hongtao,et al.The assessment of 3D model representation for retrieval with CNN-RNN networks[J].Multimedia Tools and Applications,2019,78(1):16979-16994.DOI:10.1007/s11042-018-7102-2.
[18] JIJI C V,CHAUDHURI S.Single-frame image super-resolution through contourlet learning[J/OL].EURASIP Journal on Advances in Signal Processing,2006.https://asp-eurasipjournals.springeropen.com/track/pdf/10.1155/ASP/2006/73767.DOI:10.1155/asp/2006/73767.
[19] YILDIRIM O,BALOGLU U B,TAN R S,et al.A new approach for arrhythmia classification using deep coded features and LSTM networks[J].Computer Methods and Programs in Biomedicine,2019,176:121-133.DOI:10.1016/j.cmpb.2019.05.004.
[20] 李键红,吴亚榕,吕巨建.基于自相似性与多任务高斯过程回归的单帧图像超分辨率重建[J].光学精密工程,2018,26(11):2814-2826.DOI:10.3788/OPE.20182611.2814.
[21] RAJEEV R,SAMTH J A,KARTHIKEYAN N K.An intelligent recurrent neural network with long short-term memory(LSTM)BASED batch normalization for medical image denoising[J/OL].Journal of Medical Systems,2019,43(8):[2019-06-15] .DOI:10.1007/s10916-019-1371-9.
[22] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].arXiv:1409.1556,2015.(2014-09-04)[2015-04-10] .http://www.arxiv.org/pdf/1409.1556.pdf.
[23] SHI Wenzhe,CABALLERO J,HUSZáR F,et al.Real-time single image and video super-resolution using an efficient subpixel convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas: IEEE Press,2016.DOI:10.1109/CVPR.2016.207.
[24] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man and Cybernetics,1979,9(1):62-66.DOI:10.1109/TSMC.1979.4310076
[25] XU Xiaohong,WU Zhihui,CHEN Yu,et al.Plant root spatial distribution measurements based on the hough transformation[J].Neurocomputing,2014,145:209-220.DOI:10.1016/j.neucom.2014.05.041.