[1]张世义,顾小川,唐爽,等.采用变时域模型预测的车辆路径跟踪控制方法[J].华侨大学学报(自然科学版),2021,42(2):141-149.[doi:10.11830/ISSN.1000-5013.202007031]
 ZHANG Shiyi,GU Xiaochuan,TANG Shuang,et al.Vehicle Path Tracking Control Method Using Varying Horizon of Model Predictive Control[J].Journal of Huaqiao University(Natural Science),2021,42(2):141-149.[doi:10.11830/ISSN.1000-5013.202007031]
点击复制

采用变时域模型预测的车辆路径跟踪控制方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第2期
页码:
141-149
栏目:
出版日期:
2021-03-20

文章信息/Info

Title:
Vehicle Path Tracking Control Method Using Varying Horizon of Model Predictive Control
文章编号:
1000-5013(2021)02-0141-09
作者:
张世义12 顾小川12 唐爽12 李军12
1. 重庆交通大学 机电与车辆工程学院, 重庆 400074;2. 重庆交通大学 轨道交通车辆系统集成与控制重庆市重点实验室, 重庆 400074
Author(s):
ZHANG Shiyi12 GU Xiaochuan12 TANG Shuang12 LI Jun12
1. School of Mechanical and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Chongqing Key Laboratory of Rail Vehicle System Integration and Control, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
模型预测控制 自适应控制 预测时域 自动驾驶车辆 路径跟踪
Keywords:
model predictive control adaptive control prediction horizon autonomous vehicles path tracking
分类号:
U467
DOI:
10.11830/ISSN.1000-5013.202007031
文献标志码:
A
摘要:
为了解决自动驾驶车辆变速行驶时模型预测路径跟踪控制器的可靠性问题,提出一种变预测时域自适应路径跟踪控制方法.首先,推导简化后适用于仿真验证的车辆三自由度动力学模型,引入松弛因子以避免求解过程中出现非可行解,并将跟踪控制转化为二次规划求解问题;然后,确定模型预测控制器的重要设计参数,分析车速和预测时域的变化关系,拟合预测时域与车速的函数曲线,设计一种变时域自适应路径跟踪控制器;最后,搭建Carsim/Matlab/Simulink联合仿真平台进行验证.结果表明:变时域自适应路径跟踪控制器能够随着车速变化实时更新预测时域,可保证车辆具有较好的跟踪精度和稳定性.
Abstract:
In order to solve the reliability problem of the model predictive path tracking controller for autonomous vehicles with variable speed, a varying prediction horizon adaptive path tracking control method was proposed. First, a simplified vehicle three freedom degrees dynamic model was deduced that can be applied to simulation and verification,the relaxation factors were introduced to avoid infeasible solutions when solving problems, and the path tracking control was transformed into quadratic problems. Then, the model predictive controller’s important design parameters were confirmed, the varying relationship between vehicle speed and prediction horizon was analyzed, the function curve of prediction horizon and vehicle speed was fitted to design a varying prediction horizon adaptive path tracking controller. Finally, a Carsim/Matlab/Simulink co-simulation platform was established for verification. The results show that the varying horizon adaptive path tracking controller can update the prediction horizon in real-time as vehicle speed changes, and ensure good tracking accuracy and stability of vehicles.

参考文献/References:

[1] 冉斌,谭华春,张健,等.智能网联交通技术发展现状及趋势[J].汽车安全与节能学报,2018,9(2):119-130.DOI:10.3969/j.issn.1674-8484.2018.02.001.
[2] SUN Chuanyang,ZHANG Xin,XI Lihe,et al.Design of a path-tracking steering controller for autonomous vehicles[J].Energies,2018,11(6):53103-53114.DOI:10.3390/en11061451.
[3] PADEN B,CAP M,YONG S Z,et al.A survey of motion planning and control techniques for self-driving urban vehicles[J].IEEE Transactions on Intelligent Vehicles,2016,1(1):33-55.DOI:10.1109/TIV.2016.2578706.
[4] LI Ye,JIANG Yanqing,WANG Leifeng,et al.Intelligent PID guidance control for AUV path tracking[J].Journal of Central South University,2015,22(9):3440-3449.DOI:10.1007/s11771-015-2884-0.
[5] WANG W J,HSU T M,WU T S. The improved pure pursuit algorithm for autonomous driving advanced system[C]//10th International Workshop on Computational Intelligence and Applications.Hiroshima:IEEE Press,2017:33-38.DOI:10.1109/IWCIA.2017.8203557.
[6] GUO Jinhua,LUO Yugong,LI Keqiang.An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2018,19(8):1-11.DOI:10.1109/TITS.2017.2749416.
[7] 苏树华,陈刚.机器人驾驶车辆的横向自适应反演切换控制[J].汽车工程,2020,42(1):11-19.DOI:10.19562/j.chinasae.qcgc.2020.01.002.
[8] NAM H,CHOI W,AHN C.Model predictive control for evasive steering of an autonomous vehicle[J].International Journal of Automotive Technology,2019,20(5):1033-1042.DOI:10.1007/s12239-019-0097-5.
[9] 龚建伟,姜岩,徐威.无人驾驶车辆模型预测控制[M].北京:北京理工大学出版社,2014.
[10] 严国军,贲能军,顾建华,等.基于MPC的无人驾驶拖拉机轨迹跟踪控制[J].重庆交通大学学报(自然科学版),2019,38(9):1-6.DOI:10.3969/j.issn.1674-0696.2019.09.01.
[11] 白国星,孟宇,刘立,等.基于可变预测时域及速度的车辆路径跟踪控制[J].中国机械工程,2020,31(11):1277-1284.DOI:10.3969/j.issn.1004-132X.2020.11.003.
[12] 张严,黄妙华.基于模型预测的无人驾驶车辆路径跟随控制[J].数字制造科学,2019,17(1):21-26.DOI:10.3963/j.issn.1672-3236.2019.01.005.
[13] 段建民,田晓生,夏天,等.基于模型预测控制的智能汽车目标路径跟踪方法研究[J].汽车技术,2017(8):6-11.
[14] WANG Hengyang,LIU Biao,PING Xianyao,et al.Path tracking control for autonomous vehicles based on an improved MPC[J].IEEE Access,2019,7:161064-161073.DOI:10.1109/ACCESS.2019.2944894.
[15] 王艺,蔡英凤,陈龙,等.基于模型预测控制的智能网联汽车路径跟踪控制器设计[J].机械工程学报,2019,55(8):136-144,153.DOI:10.3901/JME.2019.08.136.

相似文献/References:

[1]王启志,王永初.分散PID组态模型及其应用[J].华侨大学学报(自然科学版),1998,19(2):185.[doi:10.11830/ISSN.1000-5013.1998.02.0185]
 Wang Qizhi,Wang Yongchu.A Decentralized Proportional Plusintegral Plusderivative (PID) Configuration Model and Its Application[J].Journal of Huaqiao University(Natural Science),1998,19(2):185.[doi:10.11830/ISSN.1000-5013.1998.02.0185]
[2]傅桂元,李钟慎.一类参数未知混沌系统的自适应控制[J].华侨大学学报(自然科学版),2010,31(2):145.[doi:10.11830/ISSN.1000-5013.2010.02.0145]
 FU Gui-yuan,LI Zhong-shen.Adaptive Control for a Class of Chaotic Systems with Unknown Parameters[J].Journal of Huaqiao University(Natural Science),2010,31(2):145.[doi:10.11830/ISSN.1000-5013.2010.02.0145]
[3]傅桂元,李钟慎.无源控制的超混沌Chen系统的自适应同步[J].华侨大学学报(自然科学版),2010,31(4):378.[doi:10.11830/ISSN.1000-5013.2010.04.0378]
 FU Gui-yuan,LI Zhong-shen.Adaptive Synchronization of Hyperchaotic Chen Systems via Passive Control[J].Journal of Huaqiao University(Natural Science),2010,31(2):378.[doi:10.11830/ISSN.1000-5013.2010.04.0378]

备注/Memo

备注/Memo:
收稿日期: 2020-07-14
通信作者: 张世义(1965-),男,副教授,主要从事节能与新能源汽车的研究.E-mail:shiyi970108@163.com.
基金项目: 国家自然科学基金资助项目(51305472); 重庆市科委重点产业共性关键技术创新专项(cstc2017zdcy-zdyf0169); 重庆市轨道交通车辆系统集成与控制重庆市重点实验室项目(CSTC2015yfpt-zdsys30001)
更新日期/Last Update: 2021-03-20