参考文献/References:
[1] KENTHAPADI K,MIRONOV I,THAKURTA A G.Privacy-preserving data mining in industry[C]//Proc of the Twelfth ACM International Conference on Web Search and Data Mining(WSDM’19).New York:ACM Press,2019:1308-1310.DOI:10.1145/3308560.3320085.
[2] KOROLOVA A.Privacy-preserving WSDM[C]//Proc of the Twelfth ACM International Conference on Web Search and Data Mining(WSDM’19).New York:ACM Press,2019:4.DOI:10.1145/3289600.3291385.
[3] LI Yaliang,MIAO Chenglin,SU Lu,et al.An efficient two-layer mechanism for privacy-preserving truth discovery[C]//Proc of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining(KDD’18).New York:ACM Press,2018:1705-1714.DOI:10.1145/3219819.3219998.
[4] BULLEK B,GARBOSKI S,MIR D J,et al.Towards understanding differential privacy: When do people trust randomized response technique[C]//Proc of the 2017 CHI Conference on Human Factors in Computing Systems(CHI’17).New York:ACM Press,2017:3833-3837.DOI:10.1145/3025453.3025698.
[5] ALDÀ F,SIMON H U.Randomized response schemes, privacy and usefulness[C]//Proc of the 2014 Workshop on Artificial Intelligent and Security Workshop(AISec’14).New York:ACM Press,2014:15-26.DOI:10.1145/2666652.2666654.
[6] WARNER S L.Randomized response: A survey technique for eliminating evasive answer bias[J].The American Statistical Association,1965,60(309):63-69.DOI:10.2307/2283137.
[7] 郭宇红,童云海,唐世渭,等.带学习的同步隐私保护频繁模式挖掘[J].软件学报,2011,22(8):1749-1760.DOI:10.3724/SP.J.1001.2011.04000.
[8] SUN Chongjing,FU Yan,ZHOU Junlin,et al.Personalized privacy-preserving frequent itemset mining using randomized response[J].The Scientific World Journal,2014,2014:1-10.DOI:10.1155/2014/686151.
[9] 丁丽萍,卢国庆.面向频繁模式挖掘的差分隐私保护研究综述[J].通信学报,2014,35(10):200-209.DOI:10.3969/j.issn.1000-436x.2014.10.023.
[10] 许胜之.满足差分隐私保护的频繁模式挖掘关键技术研究[D].北京:北京邮电大学,2016.
[11] 蒋辰,杨庚,白云璐,等.面向隐私保护的频繁项集挖掘算法[J].信息网络安全,2019(4):73-81.DOI:10.3969/j.issn.1671-1122.2019.04.009.
[12] 张鹏,于波,童云海,等.基于随机响应的隐私保护关联规则挖掘[C]//第二十一届中国数据库学术会议论文集.厦门:中国计算机学会,2004:310-313.
[13] 邢欢.基于隐私保护的关联规则挖掘研究[D].南京:南京邮电大学,2016.
[14] RIZVI S J,HARITSA J R.Maintaining data privacy in association rule mining[C]//Proc of the 28th Int’l Conf on Very Large Data Bases(VLDB’02).San Francisco:Margan Kaufmann,2002:682-698.DOI:10.1016/B978-155860869-6/50066-4.
[15] AGRAWAL S,KRISHNAN V,HARITSA J.On addressing efficiency concerns in privacy preserving mining[C]//Proc of the 9th Int’l Conf on Database Systems for Advanced Applications(DASFAA’04).Berlin:Springer-Verlag,2004:113-124.DOI:10.1007/978-3-540-24571-1.
[16] XIA Yi,YANG Yirong,CHI Yun.Mining association rules with non-uniform privacy concerns[C]//Proc of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery(DMKD’04).New York: ACM Press,2004:27-34.DOI:10.1145/1008694.1008699.
[17] ANDRUSZKIEWICZ P. Optimization for MASK scheme in privacy preserving data mining for association rules[C]//Proc of Int’l Conf on Rough Sets and Emerging Intelligent Systems Paradigms(RSEISP’07). Berlin:Springer-Verlag,2007:465-474.DOI:10.1007/978-3-540-73451-2_49.
[18] 张健,刘韶涛.改进的频繁和高效用项集挖掘算法[J].华侨大学学报(自然科学版),2017,38(6):880-885.DOI:10.11830/ISSN.1000-5013.201603067.