参考文献/References:
[1] SAROHA S,AGGARWAL S K.Wind power forecasting using wavelet transforms and neural networks with tapped delay[J].CSEE Journal of Power and Energy Systems,2018,4(2):197-209.DOI:10.17775/CSEEJPES.2016.00970.
[2] 杨茂,周宜.计及风电场状态的风电功率超短期预测[J].中国电机工程学报,2019,39(5):1259-1268.DOI:10.13334/j.0258-8013.pcsee.180873.
[3] WU Yuankang,SU Po’en,WU Tingyi,et al.Probabilistic wind power forecasting using weather ensemble models[J].IEEE Transactions on Industry Applications,2018,54(6):5609-5620.DOI:10.1109/TIA.2018.2858183.
[4] 薛禹胜,郁琛,赵俊华,等.关于短期及超短期风电功率预测的评述[J].电力系统自动化,2015,39(6):141-150.DOI:10.7500/AEPS20141218003.
[5] 马聪.基于BP神经网络优化的风电场短期功率预测研究[D].昆明:昆明理工大学,2017.
[6] WANG Zheng,WANG Bo,LIU Chun,et al.Improved BP neural network algorithm to wind power forecast[J].The Journal of Engineering,2017,2017(13):940-943.DOI:10.1049/joe.2017.0469.
[7] 徐龙博,王伟,张滔,等.基于神经网络平均影响值的超短期风电功率预测[J].电力系统自动化,2017,41(21):40-45.DOI:10.7500/AEPS20170321005.
[8] 张颖超,王雅晨,邓华,等.基于IAFSA-BPNN的短期风电功率预测[J].电力系统保护与控制,2017,45(7):58-63.DOI:10.7667/PSPC16048.
[9] WANG Yun,HU Qinghua,SRINIVASAN D,et al.Wind power curve modeling and wind power forecasting with inconsistent data[J].IEEE Transactions on Sustainable Energy,2018,1(1):16-25.DOI:10.1109/TSTE.2018.2820 198.
[10] 刘红柳,杨茂,于宁,等.风向空间分散性及其对全场风电功率预测误差的影响[J].电测与仪表,2017,54(12):54-59.DOI:10.3969/j.issn.1001-1390.2017.12.009.
[11] 李长松,刘凯,肖先勇,等.基于条件互信息特征选择法和Adaboost算法的电能质量复合扰动分类[J].高电压技术,2019,45(2):579-585.DOI:10.13336/j.1003-6520.hve.20190130031.
[12] 史坤鹏,乔颖,赵伟,等.计及历史数据熵关联信息挖掘的短期风电功率预测[J].电力系统自动化,2017,41(3):13-18.DOI:10.7500/AEPS20160504020.
[13] MARINONI A,GAMBA P.Unsupervised data driven feature extraction by means of mutual information maximization[J].IEEE Transactions on Computational Imaging,2017,3(2):243-253.DOI:10.1109/TCI.2017.2669731.
[14] 李丹,任洲洋,颜伟,等.基于因子分析和神经网络分位数回归的月度风电功率曲线概率预测[J].中国电机工程学报,2017,37(18):34-43.DOI:10.13334/j.0258-8013.pcsee.161368.
[15] WANG Shuangxin,LI Meng,ZHAO Long,et al.Short-term wind power prediction based on improved small-world neural network[J].Neural Computing and Applications,2019,31(7):3173-3185.DOI:10.1007/s00521-017-3262-7.
[16] 王功臣,邓长虹,夏沛,等.考虑机组优化选取的含风电电网滚动优化调度方法[J].电力系统自动化,2017,41(11):55-60.DOI:10.7500/AEPS20160922005.
[17] ROCHA H R O,SILVESTRE L J,CELESTE W C,et al.Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO[J].IEEE Latin America Transactions,2018,16(4):1136-1141.DOI:10.1109/TLA.2018.8362148.
[18] 丁明,张超,王勃,等.基于功率波动过程的风电功率短期预测及误差修正[J].电力系统自动化,2019,43(3):8-18.DOI:10.7500/AEPS20180322011.