[1]吴晨茜,陈锻生.表情符向量化算法[J].华侨大学学报(自然科学版),2019,40(3):399-404.[doi:10.11830/ISSN.1000-5013.201803011]
 WU Chenxi,CHEN Duansheng.Emoticon Vectorization Algrorithm[J].Journal of Huaqiao University(Natural Science),2019,40(3):399-404.[doi:10.11830/ISSN.1000-5013.201803011]
点击复制

表情符向量化算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第3期
页码:
399-404
栏目:
出版日期:
2019-05-20

文章信息/Info

Title:
Emoticon Vectorization Algrorithm
文章编号:
1000-5013(2019)03-0399-06
作者:
吴晨茜 陈锻生
华侨大学 计算机科学与技术学院, 厦门 361021
Author(s):
WU Chenxi CHEN Duansheng
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
表情符 表情符向量 卷积神经网络 情感分析 微博
Keywords:
emoticon emoticon vector convolutional neural network sentiment analysis Weibo
分类号:
TP520.60
DOI:
10.11830/ISSN.1000-5013.201803011
文献标志码:
A
摘要:
为了更加客观准确地判断微博的情感倾向,提出表情符向量化算法.首先,该算法将初始化表情符向量从随机产生改进为包含表情符语义信息的向量;然后,用随机产生的负向样本提高泛化能力.通过定性和定量分析可知:该算法能够保留表情符的语义信息;相对于忽略表情符的纯文本情感分析,在微博文本中融入表情符信息的微博情感分析能够提高微博情感分类的精度.
Abstract:
In order to judge the emotional orientation of Weibo more objectively and accurately, an emoticonvectorization algorithm is proposed. Firstly, the initialization emoticon vector isimproved from random generation to a vector containing emoticon semantic information; Secondly, the randomly generated negative samples are used to improve the generalization performance. Through qualitative and quantitative analysis, the algorithm can preserve the semantic information of emoticons. Compared with the plain text sentiment analysis that ignores emoticons, sentiment analysis of Weibo incorporating emoticon information in Weibo text can improve the accuracy of Weibo sentiment classification.

参考文献/References:

[1] HU Mingqing,LIU Bing.Mining and summarizing customer reviews[C]//Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Seattle:ACM,2004:168-177.DOI:10.1145/1014052.1014073.
[2] PANG Bo,LEE L,VAITHYANATHAN S.Thumbs up?: Sentiment classification using machine learning[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:Association for Computational Linguistics,2002:79-86.DOI:10.3115/1118693.1118704.
[3] SEVERYN A, MOSCHITTI A.Unitn: Training deep convolutional neural network for twitter sentiment classification[C]//Proceedings of the 9th International Workshop on Semantic Evaluation(SemEval 2015).Denver:Association for Computational Linguistics,2015:464-469.
[4] 李松如,陈锻生.采用循环神经网络的情感分析注意力模型[J].华侨大学学报(自然科学版),2018,39(2):252-255.DOI:10.11830/ISSN.1000-5013.201606123.
[5] SANTOS C N D,GATTI M.Deep convolutional neural networks for sentiment analysis of short texts[C]//the 25th International Conference on Computational Linguistics.Ireland:COLING,2014:69-78.
[6] 林振扬.网络表情符号的符号学阐释[J].美术大观,2016(2):128.DOI:10.3969/j.issn.1002-2953.2016.02.067.
[7] 张艳辉.融合表情符号的微博文本倾向性分析[D].济南:山东师范大学,2015.
[8] DAVIDOV D,TSUR O,RAPPOPORT A.Enhanced sentiment learning using Twitter hashtags and smileys[C]//COLING ’10 Proceedings of the 23rd International Conference on Computational Linguistics.Beijing:Association for Computational Linguistics,2010:241-249.
[9] 谭文芳.网络表情符号的影响力分析[J].求索,2011(10):202-204.
[10] WANG Hao,CASTANON J A.Sentiment expression via emoticons on social media[C]//Proceedings of the 2015 IEEE International Conference on Big Data.Washington D C:IEEE Press,2015:2404-2408.DOI:10.1109/BigData.2015.7364034.
[11] YANG Changhua,LIN H Y,CHEN H H.Building emotion lexicon from weblog corpora[C]//Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions.Stroudsburg:Association for Computational Linguistics,2007:133-136.DOI:10.3115/1557769.1557809.
[12] JIANG Fei,LIU Yiqun,SUN Jiashen,et al.Microblog sentiment analysis with emoticon space model[J].Journal of Computer Science and Technology,2015,30(5):1120-1129.DOI:10.1007/s11390-015-1587-1.
[13] 张仰森,孙旷怡,杜翠兰.一种级联式微博情感分类器的构建方法[J].中文信息学报,2017(5):183-189.DOI:10.3969/j.issn.1003-0077.2017.05.025.
[14] 刘宝芹,牛耘,张景.基于统计数据的微博表情符分析及其在情绪分析中的应用[J].计算机工程与科学,2016,38(3):577-584.DOI:10.3969/j.issn.1007-130X.2016.03.027.
[15] EISNER B,ROCKTÄSCHEL T,AUGENSTEIN I,et al.Emoji2vec: Learning emoji representations from their Description[C]//The Fourth International Workshop on Natural Language Processing for Social Media.Austin:Association for Computational Linguistics,2016:48-54.DOI:10.18653/v1/W16-6208.

备注/Memo

备注/Memo:
收稿日期: 2018-03-09
通信作者: 陈锻生(1959-),男,教授,博士,主要从事数字图像处理与模式识别的研究.E-mail:dschen@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61370006); 福建省科技计划重点资助项目(2015H0025)
更新日期/Last Update: 2019-05-20