参考文献/References:
[1] 曾凯,丁世飞.图像超分辨率重建的研究进展[J].计算机工程与应用,2017,53(16):29-35.DOI:10.3778/j.issn.1002-8331.1705-0097.
[2] YANG C Y,MA Chao,YANG M H.Single-image super-resolution: A benchmark[C]//European Conference on Computer Vision.Switzerland:Springer,2014:372-386.DOI:10.1007/978-3-319-10593-2_25.
[3] YANG Jianchao,WRIGHT J,HUANG T,et al.Image super-resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition.Anchorage:IEEE Press,2008:1-8.DOI:10.1109/CVPR.2008.4587647.
[4] HE Hu,KONDI L P.A regularization framework for joint blur estimation and super-resolution of video sequences[C]//Proceedings of the 2005 IEEE International Conference on Image Processing.Genova:IEEE Press,2005:329-332.DOI:10.1109/ICIP.2005.1530395.
[5] LI Xiaoguang,LAM K M,QIU G P,et al.Examplebased image super-resolution with class-speciflc predictors[J].Journal of Visual Communication and Image Representation,2009,20(5):312-322.DOI:10.1016/j.jvcir.2009.03.008.
[6] SU Congyong,ZHUANG Yueting,LI Huang,et al.Steerable pyramid-based face hallucination[J].Pattern Recognition,2005,38(6):813-824.DOI:10.1016/j.patcog.2004.11.007.
[7] JIJI C V,CHAUDHURI S.Single-frame image super-resolution through contourlet learning[C]//EURASIP Journal on Advances in Signal Processing.New York:Springer,2006:235.DOI:10.1155/ASP/2006/73767.
[8] 张晓燕,秦龙龙,钱渊,等.一种改进的稀疏表示超分辨率重建算法[J].重庆邮电大学学报(自然科学版),2016,28(3):400-405.DOI:10.3979/j.issn.1673-825X.2016.03.020.
[9] FREEMAN W T,PASZTOR E C,CARMICHAEL O T.Learning low-level vision[J].International Journal of Computer Vision,2000,40(1):25-47.DOI:10.1109/ICCV.1999.790414.
[10] FREEMAN W T,JONE T R,PASZTOR E C.Example-based super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65.DOI:10.1109/38.988747.
[11] DONG Chao,CHEN C L,HE Kaiming,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307.DOI:10.1109/TPAMI.2015.2439281.
[12] 刘晨羽,蒋云飞,李学明.基于卷积神经网的单幅图像超分辨率重建算法[J].计算机辅助设计与图形学学报,2017,29(9):1643-1649.DOI:10.3969/j.issn.1003-9775.2017.09.007.
[13] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:1646-1654.DOI:10.1109/CVPR.2016.182.
[14] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J/OL].Computer Science,2014.[2017-06-10] .http://arxiv.org/pdf/1409.1556.
[15] SHI Wenzhe,CABALLERO J,HUSZAR F,et al.Real-time single image and video super-resolution using an efficient subpixel convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognitionhttp.Las Vegas:IEEE Press,2016:1874-1883.DOI:10.1109/CVPR.2016.207.
[16] OTSU N.A threshold selection method from gray-level histograms[J].Automatica,1979,9(1):62-66.DOI:10.1109/TSMC.1979.4310076.
[17] XU Xiaohong,WU Zhihui,CHEN Yu,et al.Plant root spatial distribution measurements based on the hough transformation[J].Neurocomputing,2014,145:209-220.DOI:10.1016/j.neucom.2014.05.041.
相似文献/References:
[1]钟必能,潘胜男.选择性搜索和多深度学习模型融合的目标跟踪[J].华侨大学学报(自然科学版),2016,37(2):207.[doi:10.11830/ISSN.1000-5013.2016.02.0207]
ZHONG Bineng,PAN Shengnan.Multi-Clue Fusion Target Tracking Algorithm Based on Selective Search and Deep Learning[J].Journal of Huaqiao University(Natural Science),2016,37(2):207.[doi:10.11830/ISSN.1000-5013.2016.02.0207]
[2]邹辉,杜吉祥,翟传敏,等.深度学习与一致性表示空间学习的跨媒体检索[J].华侨大学学报(自然科学版),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
ZOU Hui,DU Jixiang,ZHAI Chuanmin,et al.Cross-Modal Multimedia Retrieval Based Deep Learning and Shared Representation Space Learning[J].Journal of Huaqiao University(Natural Science),2018,39(2):127.[doi:10.11830/ISSN.1000-5013.201508047]
[3]胡珉,周显威,高新闻.公路隧道视频预处理和病害识别算法[J].华侨大学学报(自然科学版),2020,41(5):595.[doi:10.11830/ISSN.1000-5013.202002024]
HU Min,ZHOU Xianwei,GAO Xinwen.Video Preprocess and Defect Recognition Algorithm for Road Tunnel[J].Journal of Huaqiao University(Natural Science),2020,41(2):595.[doi:10.11830/ISSN.1000-5013.202002024]
[4]马迎杰,王佳斌,郑力新,等.深度可分离卷积网络的驾驶状态识别算法[J].华侨大学学报(自然科学版),2021,42(2):259.[doi:10.11830/ISSN.1000-5013.202001010]
MA Yingjie,WANG Jiabin,ZHENG Lixin,et al.Driving State Recognition Algorithm Based on Deep Separable Convolutional Network[J].Journal of Huaqiao University(Natural Science),2021,42(2):259.[doi:10.11830/ISSN.1000-5013.202001010]
[5]叶靓玲,李伟达,郑力新,等.结合目标检测与特征匹配的多目标跟踪算法[J].华侨大学学报(自然科学版),2021,42(5):661.[doi:10.11830/ISSN.1000-5013.202105018]
YE Liangling,LI Weida,ZHENG Lixin,et al.Multiple Object Tracking Algorithm Based on Detection and Feature Matching[J].Journal of Huaqiao University(Natural Science),2021,42(2):661.[doi:10.11830/ISSN.1000-5013.202105018]
[6]周密,张维纬,陶英杰,等.采用可替代滤波器的卷积神经网络模型剪枝方法[J].华侨大学学报(自然科学版),2022,43(2):245.[doi:10.11830/ISSN.1000-5013.202011013]
ZHOU Mi,ZHANG Weiwei,TAO Yingjie,et al.Pruning Method of Convolutional Neural Network Using Replaceable Filter[J].Journal of Huaqiao University(Natural Science),2022,43(2):245.[doi:10.11830/ISSN.1000-5013.202011013]