参考文献/References:
[1] BENNE? M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahn equation[J].Applied Numerical Mathematics,2004,51(2/3):187-205.DOI:10.1016/j.apnum.2004.05.001.
[2] FENG Xiaobing,PROHL A.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J].Numerische Mathematik,2003,94(1):33-65.DOI:10.1007/s00211-002-0413-1.
[3] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(10):7424-7439.DOI: 10.1103/PhysRevA.45.7424.
[4] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in a population[J].Journal of Mathematical Biology,1981,12(2):237-249.DOI:10.1007/BF00276132.
[5] HAZEWINKEL M,KAASHOEK J F,LEYNSE B.Pattern formation for a one dimensional evolution equation based on Thom’s river basin model[J].Mathematics and Its Applications,1986,30:23-46.DOI:10.1007/978-94-009-4718-4-4.
[6] CHEN Xinfu,ELLIOTT C,GARDINER A,et al.Convergence of numerical solutions to the Allen-Cahn equation[J].Appl Anal,1998,69(1):47-56.DOI:10.1080/00036819808840645.
[7] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[8] FENG Xiaobing,LI Yukun.Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow[J].Ima Journal of Numerical Analysis,2014,35(4):1622-1651.DOI:10.1093/imanum/dru058.
[9] ZHANG Jian,DU Qiang.Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit[J].SIAM J Sci Comput,2009,31(4):3042-3063.DOI:10.1137/080738398.
[10] FENG Xinlong,TANG Tao,YANG Jiang.Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods[J].SIAM J Sci Comput,2015,37:A271-A294.DOI:10.1137/130928662.
[11] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Journal Numerical Heat Transfer,Part B:Fundamentals,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[12] LI Yibao,LEE H G,JEONG D,et al.An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation[J].Comput Math Appl,2010,60(6):1591-1606.DOI:10.1016/j.camwa.2010.06.041.
[13] LEE H G,LEE J Y.A semi-analytical Fourier spectral method for the Allen-Cahn equation[J].Comput Math Appl,2014,68(3):174-184.DOI:10.1016/j.camwa.2014.05.015.
[14] LEE H G,LEE J Y.A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms[J].Physica A,2015,432:24-34.DOI:10.1016/j.physa.2015.03.012.
[15] 庄清渠,王金平.四阶常微分方程的Birkhoff配点法[J] 华侨大学学报(自然科学版),2018,39(2):306-311.DOI:10.11830/ISSN.1000-5013.201707005.
[16] 李淑萍,王兆清.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485.DOI:10.3969/j.issn.1673-7644.2007.06.003.
相似文献/References:
[1]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(1):412.[doi:10.11830/ISSN.1000-5013.201810014]
[2]黄蓉,翁智峰.时间分数阶Allen-Cahn方程的重心插值配点法[J].华侨大学学报(自然科学版),2022,43(4):553.[doi:10.11830/ISSN.1000-5013.202104060]
HUANG Rong,WENG Zhifeng.Barycentric Interpolation Collocation Method for Time-Fractional Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2022,43(1):553.[doi:10.11830/ISSN.1000-5013.202104060]
[3]邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690.[doi:10.11830/ISSN.1000-5013.202001001]
DENG Yangfang,YAO Zefeng,WANG Jingying,et al.Two Dimensional Allen-Cahn Equation Solved By FiniteDifference Method/Collocation Method[J].Journal of Huaqiao University(Natural Science),2020,41(1):690.[doi:10.11830/ISSN.1000-5013.202001001]