[1]聂一亮,杜吉祥,杨麟.卷积特征图融合与显著性检测的图像检索[J].华侨大学学报(自然科学版),2018,39(6):937-941.[doi:10.11830/ISSN.1000-5013.201706028]
 NIE Yiliang,DU Jixiang,YANG Lin.Image Retrieval Based on Convolution Feature Map Fusion and Saliency Detection[J].Journal of Huaqiao University(Natural Science),2018,39(6):937-941.[doi:10.11830/ISSN.1000-5013.201706028]
点击复制

卷积特征图融合与显著性检测的图像检索()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第6期
页码:
937-941
栏目:
出版日期:
2018-11-20

文章信息/Info

Title:
Image Retrieval Based on Convolution Feature Map Fusion and Saliency Detection
文章编号:
1000-5013(2018)06-0937-05
作者:
聂一亮 杜吉祥 杨麟
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
NIE Yiliang DU Jixiang YANG Lin
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
图像检索 特征图融合 显著性检测 卷积神经网络
Keywords:
image retrieval feature map fusion saliency detection convolutional neural network
分类号:
TP391
DOI:
10.11830/ISSN.1000-5013.201706028
文献标志码:
A
摘要:
针对基于深度学习的图像检索提取特征往往包含了复杂的背景噪声,导致图像检索的精确率并不高的问题,提出一种特征图融合与显著性检测的方法.首先,训练用于分类的深度卷积神经网络模型.然后,并将图像卷积之后的特征图谱进行融合,得到图像的显著性区域.最后,通过计算图像显著性特征的余弦距离来进行检索.实验结果证明:相比目前主流的方法,文中方法能够有效提高检测精度,且鲁棒性较高.
Abstract:
Based on an in-depth learning of image retrieval, the features extracted usually contained the complicated background noises, which resulted in a low level of accuracy in image retrieval. The methods of feature map fusion and saliency detection are proposed in this paper. The method firstly trained deep convolutional neural network model used in image classification, and then fused the features of maps after image convolution in order to obtain the salient region of retrieved images. Finally, the retrieved images are calculated using the cosine distance of the salient features. The experiment shows that the proposed methods are able to effectively improve the accuracy of retrieval and that the robustness is relatively high, compared to the current mainstream methods.

参考文献/References:

[1] LEW M S,SEBE N,DJERABA C,et al.Content-based multimedia information retrieval: State of the art and challenges[J].ACM Trans Multimedia Comput Commun Appl,2006,2(1):1-19.DOI:10.1145/1126004.1126005.
[2] LOWE D G.Object recognition from local scale-invariant features[C]//IEEE International Conference on Computer Vision.Kerkyra:IEEE Press,1999:1150.DOI:10.1109/ICCV.1999.790410.
[3] OJALA T,PIETIKAINEN M,MAENPAA T.Gray scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.DOI:10.1109/TPAMI.2002.1017623.
[4] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Press,2005:886-893.DOI:10.1109/CVPR.2005.177.
[5] OLIVA A,TORRALBA A.Modeling the shape of the scene: A holistic representation of the spatial envelope[J].Intl J of Computer Vision,2001,42(3):145-175.DOI:10.1023/A:1011139631724.
[6] LIN K,YANG H F,HSIAO J H,et al.Deep learning of binary hash codes for fast image retrieval[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops.Boston:IEEE Press,2015:27-35.DOI:10.1109/CVPRW.2015.7301269.
[7] NIE Yiliang,DU Jixiang,FAN Wentao,et al.Visual categorization with bags of keypoints[C]//Workshop on Statistical Learning in Computer Vision Eccv.Liverpool:Springer,2004:1-22.DOI:10.1007/978-3-319-63309-1_19.
[8] NG Y H,YANG F,DAVIS L S.Exploiting local features from deep networks for image retrieval[C]//Computer Vision and Pattern Recognition Workshops.Boston:IEEE Press,2015:53-61.DOI:10.1109/cvprw.2015.7301272.
[9] LIU Ziwei,LUO Ping,QIU Shi,et al.Deepfashion: Powering robust clothes recognition and retrieval with rich annotations[C]//The IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE Press,2016:1096-1104.DOI:10.1109/cvpr.2016.124.
[10] BABENKO A,LEMPITSKY V.Aggregating deep convolutional features for image retrieval[C]//The IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE Press,2015:2380-7504.DOI:10.1109/iccv.2015.150.
[11] 祝军,赵杰煜,董振宇.融合显著信息的层次特征学习图像分类[J].计算机研究与发展,2014,51(9):1919-1928.DOI:10.7544/issn1000-1239.2014.20140138.
[12] WEI Xiushen,LUO Jianhao,WU Jianxin.Selective convolutional descriptor aggregation for fine-grained image retrieval[J].IEEE Transactions on Image Processing,2017,26(6):2868.DOI:10.1109/tip.2017.2688133.
[13] JIA Y,SHELHAMER E,DONAHUE J,et al.Caffe: Convolutional architecture for fast feature embedding[C]//ACM International Conference on Multimedia.Florida:ACM,2014:675-678.
[14] KALANTIDIS Y,MELLINA C,OSINDERO S.Cross-dimensional weighting for aggregated deep convolutional features[C]//European Conference on Computer Vision.Amsterdam:Springer, 2016:685-701.DOI:10.1007/978-3-319-46604-0_48.

备注/Memo

备注/Memo:
收稿日期: 2017-06-28
通信作者: 杜吉祥(1977-),男,教授,博士,主要从事模式识别及图像处理研究.Email:jxdu@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61673186, 61370006, 61502183); 福建省自然科学基金资助项目(2013J06014, 2014J01237); 华侨大学中青年教师科研提升资助计划项目(ZQN-YX108); 华侨大学研究生科研创新培育计划资助项目(1511
更新日期/Last Update: 2018-11-20