[1]叶俊辉,王森林,黎辉常,等.二氧化铅/石墨烯电极的制备及其电化学性能[J].华侨大学学报(自然科学版),2018,39(6):872-878.[doi:10.11830/ISSN.1000-5013.201804038]
 YE Junhui,WANG Senlin,LI Huichang,et al.Preparation and Electrochemical Performance of PbO2/Graphene Electrode[J].Journal of Huaqiao University(Natural Science),2018,39(6):872-878.[doi:10.11830/ISSN.1000-5013.201804038]
点击复制

二氧化铅/石墨烯电极的制备及其电化学性能()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第6期
页码:
872-878
栏目:
出版日期:
2018-11-20

文章信息/Info

Title:
Preparation and Electrochemical Performance of PbO2/Graphene Electrode
文章编号:
1000-5013(2018)06-0872-07
作者:
叶俊辉 王森林 黎辉常 梁维俊 张燕秀
华侨大学 材料科学与工程学院, 福建 厦门 361021
Author(s):
YE Junhui WANG Senlin LI Huichang LIANG Weijun ZHANG Yanxiu
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
β-PbO2 石墨烯 铅酸电池 复合正极 电化学性能
Keywords:
β-PbO2 graphene lead-acid cell composite positive electrode electrochemical performance
分类号:
O646
DOI:
10.11830/ISSN.1000-5013.201804038
文献标志码:
A
摘要:
采用沉淀结合法,制备二氧化铅/石墨烯(β-PbO2/rGO)复合材料.通过X-射线粉末衍射仪(XRD)、场发射电子扫描显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)和比表面积分析仪研究该复合材料的结构、形貌和比表面积,利用电化学测试技术研究β-PbO2/rGO复合电极和纯β-PbO2电极的电化学性能.结果表明:在复合材料中,纳米β-PbO2较均匀地分散在rGO片表面,β-PbO2/rGO复合材料比纯β-PbO2具有更大的比表面积;复合电极因具有更多的反应活性位点,电化学反应速度较快;在不同的电流密度下,β-PbO2/rGO电极的质量比容量比纯β-PbO2电极高,证明复合电极具有比纯β-PbO2电极更好的电化学性能.
Abstract:
The β-PbO2/rGO composite material was prepared by precipitation combined with two-step hydrothermal method. The structure and morphology of the composite materials were studied by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), high resolution transmission electron microscopy(HRTEM)and specific surface analyzer. The electrochemical performances of the β-PbO2/rGO composite electrode and β-PbO2 electrode were studied using electrochemical testing technology. As a result, in composite materials, β-PbO2 nanoparticles distributed evenly on the surface of rGO sheet, and the β-PbO2/rGO composite had a larger specific surface area than the pure β-PbO2. The composite electrode had more active reaction sites, accordingly the electrochemical reaction rate was faster. At different current densities, the mass specific capacity of β-PbO2/rGO electrodes was always higher than that of pure β-PbO2 electrodes, which proves that the composite electrode has better electrochemical performance than the pristine electrode.

参考文献/References:

[1] SARAVANAN M,GANESAN M,AMBALAVANAN S.An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J].Journal of Power Sources,2014,251(C):20-29.DOI:10.1016/j.jpowsour.2013.10.143.
[2] SWOGGER S W,EVERILL P,DUBEY D P,et al.Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J].Journal of Power Sources,2014,261:55-63.DOI:10.1016/j.jpowsour.2014.03.049.
[3] PAVLOV D,NIKOLOV P,ROGACHEV T.Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance[J].Journal of Power Sources,2011,196(11):5155-5167.DOI:10.1016/j.jpowsour.2011.02.014.
[4] YANG Shaoqiang,LI Ruhong,CAI Xianyu,et al.Influence of hydrated PbO2 content on the cycling performance of lead-acid batteries[J].Journal of the Electrochemical Society,2017,164(9):A2007-A2011.DOI:10.1149/2.126170 9jes.
[5] LI Xiaolin,LI Xueming,YANG Wenjing,et al.Preparation of 3D PbO2 nanospheres@SnO2 nanowires/Ti electrode and its application in methyl orange degradation[J].Electrochimica Acta,2014,146(37):15-22.DOI:10.1016/j.electacta.2014.08.150.
[6] KOPCZYÑSKI K,KOLANOWSKI ?,BARANIAK M,et al.Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors[J].Current Applied Physics,2016,17(1):66-71.DOI:10.1016/j.cap.2016.10.021.
[7] 郑一雄.石墨基二氧化铅阳极的制备和应用[J].华侨大学学报(自然科学版),1998,19(4):358-361.DOI:10.11830/ISSN.1000-5013.1998.04.0358.
[8] WANG Faxing,XIAO Shiying,HOU Yuyang,et al.Electrode materials for aqueous asymmetric supercapacitors[J].Rsc Advances,2013,3(32):13059-13084.DOI:10.1039/c3ra23466e.
[9] LI Xiaohong,PLETCHER D,WALSH F C.Electrodeposited lead dioxide coatings[J].Chemical Society Reviews,2011,40:3879-3894.DOI:10.1039/c0cs00213e.
[10] WU Haoran,LIAN K.Vanadium oxide electrode synthesized by electroless deposition for electrochemical capacitors[J].Journal of Power Sources,2014,271:534-537.DOI:10.1016/j.jpowsour.2014.08.034.
[11] JIN J E,JIN D,SHIM J,et al.Enhancing reversible sulfation of PbO2 nanoparticles for extended lifetime in lead-acid batteries[J].Journal of the Electrochemical Society,2017,164(7):A1628-A1634.DOI:10.1149/2.1291707jes.
[12] WONG K N,KHIEW P S,ISA D,et al.Facile synthesis of flower-like PbO as a precursor to form nanodendritic PbO2 for positive active material(PAM)of lead-acid electrochemical storage devices[J].Materials Letters,2014,128(8):97-100.DOI:10.1016/j.matlet.2014.04.122.
[13] DUAN Xiaoyue,ZHAO Cuimei,LIU Wei,et al.Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol[J].Electrochimica Acta,2017,240:424-436.DOI:10.1016/j.electacta.2017.04.114.
[14] LI Weidong,YANG Huayun,LIU Qi.Hydrothermal synthesis of PbO2/RGO nanocomposite for electrocatalytic degradation of cationic red X-GRL[J].Journal of Nanomaterials,2017,2017:1-7.DOI:10.1155/2017/1798706.
[15] GORGOLIS G,GALIOTIS C.Graphene aerogels: A review[J].2D Materials,2017,4(3):032001.DOI:10.1088/2053-1583/aa7883.
[16] PEIGNEY A,LAURENT C,FLAHAUT E,et al.Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J].Carbon,2001,39(4):507-514.DOI:10.1016/s0008-6223(00)00155-x.
[17] RAMANATHAN T,ABDALA A A,STANKOVICH S,et al.Functionalized graphene sheets for polymer nanocomposites.[J].Nature Nanotechnology,2008,3(6):327-331.DOI:10.1038/nnano.2008.96.
[18] AUNKOR M T H,MAHBUBUL I M,SAIDUR R,et al.The green reduction of graphene oxide[J].RSC Adv,2016,6(33):27807-27828.DOI:10.1039/c6ra03189g.
[19] HUANG Zongchuan,WANG Senlin,WANG Jianpeng,et al.Exfoliation-restacking synthesis of coal-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors[J].Electrochimica Acta,2015,152:117-125.DOI:10.1016/j.electacta.2014.11.085.
[20] 刘波.α-PbO2和β-PbO2的制备及其循环伏安性能研究[D].武汉:华中科技大学,2014.
[21] ZHANG Wenli,LIN Haibo,KONG Haishen,et al.High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate[J].International Journal of Hydrogen Energy,2014,39(30):17153-17161.DOI:10.1016/j.ijhydene.2014.08.039.

相似文献/References:

[1]石沫,陈丹青,陈国华.不饱和树脂/石墨烯复合材料的制备及性能[J].华侨大学学报(自然科学版),2014,35(5):542.[doi:10.11830/ISSN.1000-5013.2014.05.0542]
 SHI Mo,CHEN Dan-qing,CHEN Guo-hua.Preparation and Properties of Unsaturated Polyester Resin/Graphene Composite[J].Journal of Huaqiao University(Natural Science),2014,35(6):542.[doi:10.11830/ISSN.1000-5013.2014.05.0542]
[2]陈厚波,邱伟彬,黄艺馨,等.涂覆石墨烯的电介质纳米盘的表面等离激元回音壁模特性[J].华侨大学学报(自然科学版),2017,38(6):842.[doi:10.11830/ISSN.1000-5013.201603030]
 CHEN Houbo,QIU Weibin,HUANG Yixin,et al.Surface Plasmon Polariton Whispering-Gallery-Mode Properties of Dielectric Nanodisks Covered by Graphene Monolayer[J].Journal of Huaqiao University(Natural Science),2017,38(6):842.[doi:10.11830/ISSN.1000-5013.201603030]

备注/Memo

备注/Memo:
收稿日期: 2018-04-12
通信作者: 王森林(1962-),男,教授,博士,主要从事超级电容器电极材料的研究.E-mail:slwang@hqu.edu.cn.
基金项目: 华侨大学研究生科研创新能力培育计划资助项目(1611302059)
更新日期/Last Update: 2018-11-20