[1]杨栖凤,崔长彩,黄国钦.金刚石砂轮表面二维形貌全场测量和分析[J].华侨大学学报(自然科学版),2018,39(4):479-484.[doi:10.11830/ISSN.1000-5013.201711013]
 YANG Qifeng,CUI Changcai,HUANG Guoqin.Measurement and Analysis of Two-Dimensional Surface Topography of Whole Grinding Wheel[J].Journal of Huaqiao University(Natural Science),2018,39(4):479-484.[doi:10.11830/ISSN.1000-5013.201711013]
点击复制

金刚石砂轮表面二维形貌全场测量和分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第4期
页码:
479-484
栏目:
出版日期:
2018-07-18

文章信息/Info

Title:
Measurement and Analysis of Two-Dimensional Surface Topography of Whole Grinding Wheel
文章编号:
1000-5013(2018)04-0479-06
作者:
杨栖凤 崔长彩 黄国钦
华侨大学 制造工程研究院, 福建 厦门 361021
Author(s):
YANG Qifeng CUI Changcai HUANG Guoqin
Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
关键词:
金刚石砂轮 表面形貌 机器视觉 不重叠拼接 图像处理
Keywords:
grinding wheel surface topography machine vision non-overlapping stitching image processing
分类号:
TP394.1;TH691.9
DOI:
10.11830/ISSN.1000-5013.201711013
文献标志码:
A
摘要:
为了实现金刚石砂轮表面二维形貌的全场测量,有效评价砂轮形貌对磨削力、磨削深度、功率消耗、磨削温度、加工精度的影响,提出基于机器视觉的测量方法;结合CCD感光元件和自动砂轮驱动回转技术实现砂轮形貌的非接触全场测量.根据测量对象尺寸和测量特征量优化选取单次采样面积,通过不重叠拼接实现全场成像;对图像进行处理,提取特征磨粒,分析金刚石砂轮表面形貌的二维关键指标.采用搭建的系统对钎焊金刚石砂轮进行测量实验研究,提取磨粒总数为1 518颗,磨粒分布密度为0.5 颗·mm-2,磨粒平均面积为0.404 mm2,磨粒平均粒径为0.359 mm.实验结果表明:文中方法可实现对钎焊金刚石砂轮表面形貌的非接触全场测量,并提供砂轮表面磨粒数、粒径及位置等关键参数.
Abstract:
To realize the measurement and analysis of the whole grinding wheel two-dimensional surface topography for the effective evaluation of the grinding force, grinding depth, power consumption, grinding temperature and machining quality related with the surface, a machine vision-based method was proposed. It combined CCD technology with automatic drive rotary technology to realize the non-contact measurement. The size of sampling areas was determined according to the measured object and measured features and they were stitched together without overlap. The image was processed for grain feature analysis and some key parameters were extracted. A brazed grinding wheel was measured using the system. The results: the number of abrasive grains is 1 518, the grain density is 0.5 grain·mm-2, the average area of grains is 0.404 mm2 and the average diameter of grinding wheel is 0.359 mm. Experimental results indicate that the proposed method can realize the non-contact measurement of the whole brazed grinding wheel topography and provide some important parameters such as grain number, grain average diameter and its location.

参考文献/References:

[1] 高国富,薛进学,赵波,等.细粒度金刚石砂轮椭圆超声振动修整试验研究[J].金刚石与磨料磨具工程,2008(6):55-60.DOI:10.3969/j.issn.1006-852X.2008.06.013.
[2] 张大将,王颖达,陈世隐,等.钎焊金刚石砂轮磨削YG8硬质合金的试验研究[J].超硬材料工程,2017,29(3):19-23.
[3] MENG Xinxin,LIN Youxi,REN Zhiying,et al.Surface quality of grinding optical glasses using eletroplated diamond wheel[J].Diamond and Abrasives Engineering,2017,37(3):91-95.DOI:10.13394/j.cnki.jgszz.2017.3.0018.
[4] 周丽君.基于垂直扫描白光干涉测量法的砂轮磨粒测量及评定[D].厦门:华侨大学,2013.
[5] YAN Lan,ZHOU Zhixiong,JIANG Feng,et al.The application of three-dimensional surface parameters to characterizing grinding wheel topography[J].Advanced Materials Research,2010,126/127/128:603-608.DOI:10.4028/www.scientific.net/AMR.126-128.603.
[6] 刘伟,商圆圆,邓朝晖,等.砂轮表面形貌检测方法的研究进展[J].金刚石与磨料磨具工程,2017,37(6):70-78.DOI:10.13394/j.cnki.jgszz.2017.6.0013.
[7] BLUNT L,EBDON S.Application of three-dimensional surface measurement techniques to characterizing grinding wheel topography[J].Precision Engineering,1997,20(2):145-146.DOI:10.1016/S0141-6359(97)81201-9.
[8] OJIMA H,NAGAYAMA T,ZHOU Libo,et al.Research on development of on-machine 3D measuring system of grinding wheel surface topography by stereo images[J].Journal of the Japan Society for Precision Engineering,2016,82(2):186-191.DOI:10.2493/jjspe.82.186.
[9] 陈锋,陈五一,陈志同.基于激光三角法的CBN杯形砂轮表面形貌检测[J].北京航空航天大学学报,2011,37(10):1321-1325.DOI:10.13700/j.bh.1001-5965.2011.10.003.
[10] DARAFON A,WARKENTIN A,BAUER R.Characterization of grinding wheel topography using a white chromatic sensor[J].International Journal of Machine Tools and Manufacture,2013,70(7):22-31.DOI:10.1016/j.ijmachtools.2013.03.003.
[11] 崔长彩,余卿,张遨,等.金刚石砂轮表面形貌测量系统[J].光学精密工程,2014,22(12):3167-3174.DOI:10.3788/OPE.20142212.3167.
[12] 杜晗,陈根余,周聪,等.光纤激光在线整形金刚石砂轮检测系统设计[J].激光技术,2016,40(6):930-934.DOI:10.7510/jgjs.issn.1001-3806.2016.06.032.
[13] 杨勇生,王珉,李汉中.砂轮形貌的激光功率谱特性及其检测[J].南京航空航天大学学报,1997,29(1):79-84.
[14] 吴文艺,崔长彩,叶瑞芳,等.采用二次灰度直方图的砂轮磨粒图像阈值分割[J].华侨大学学报(自然科学版),2016,37(4):422-426.DOI:10.11830/ISSN.1000-5013.201604006.

相似文献/References:

[1]申云,陆静,刘瑞亮.软质印章石抛光工艺[J].华侨大学学报(自然科学版),2020,41(4):428.[doi:10.11830/ISSN.1000-5013.201910060]
 SHEN Yun,LU Jing,LIU Ruiliang.Polishing Technology of Soft Seal Stone[J].Journal of Huaqiao University(Natural Science),2020,41(4):428.[doi:10.11830/ISSN.1000-5013.201910060]

备注/Memo

备注/Memo:
收稿日期: 2017-11-21
通信作者: 崔长彩(1972-),女,教授,博士,主要从事表面形貌评定技术、表面形貌测量技术及自动测量仪器的研究.E-mail:cuichc@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51235004, 51475176, 51575198); 华侨大学研究生科研创新能力培育计划资助项目(1611303058)
更新日期/Last Update: 2018-07-20