[1]谢维波,夏远祥,刘文.采用互补特征的核相关滤波目标跟踪算法[J].华侨大学学报(自然科学版),2018,39(3):429-434.[doi:10.11830/ISSN.1000-5013.201611030]
 XIE Weibo,XIA Yuanxiang,LIU Wen.Target Tracking Algorithm Using Complementary Features of Kernelized Correlation Filter[J].Journal of Huaqiao University(Natural Science),2018,39(3):429-434.[doi:10.11830/ISSN.1000-5013.201611030]
点击复制

采用互补特征的核相关滤波目标跟踪算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第3期
页码:
429-434
栏目:
出版日期:
2018-05-20

文章信息/Info

Title:
Target Tracking Algorithm Using Complementary Features of Kernelized Correlation Filter
文章编号:
1000-5013(2018)03-0429-06
作者:
谢维波 夏远祥 刘文
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
XIE Weibo XIA Yuanxiang LIU Wen
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
目标跟踪算法 核相关滤波 互补特征 自适应权重 颜色特征 方向梯度直方图特征
Keywords:
target tracking algorithms kernel correlation filter complementary features adaptive weights color feature histogram of oriented gradient feature
分类号:
TP311
DOI:
10.11830/ISSN.1000-5013.201611030
文献标志码:
A
摘要:
为了改善跟踪算法的性能,提出一种自适应加权的融合颜色特征和方向梯度直方图(HOG)特征的多核多通道的相关滤波跟踪算法.针对核相关滤波算法特征单一的问题,采用互补特征核空间描述目标,并根据互补特征响应值的大小,自适应为互补特征核空间分配权重、更新模型,提高算法的鲁棒性.实验结果表明:所提出的算法不仅能在一定程度上处理目标外观变化问题,而且完全满足跟踪场景的实时需求.
Abstract:
In order to improve the performance of tracking algorithm, a correlation filter tracking algorithm with multi-kernel and multi-channel using an adaptive weighted fusion method based on color feature and histogram of oriented gradient(HOG)feature is proposed. As kernelized correlation filter can extract few features, this algorithm presents target appearance by using complementary kernel features. According to the magnitude of the response values of the complementary features, the weights of the complementary kernel features and updating model are adaptively assigned, improving the robustness of the algorithm. The results of experiments show that the proposed algorithm not only can handle changes of object’s appearance, but also completely meet the tracking demand of real-time scenario.

参考文献/References:

[1] BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual object tracking using adaptive correlation filters[C]//Proceedings of the International Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE Press,2010:2544-2550.
[2] HENRIQUES J F,CASERIO R,MARTINS P,et al.Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of the Europe Conference on Computer Vision.Florence:Springer Press,2012:702-715.
[3] ZHANG Kaihua,ZHANG Lei,LIU Qingshan,et al.Fast visual tracking via dense spatio-temporal context learning[C]//Proceedings of the Europe Conference on Computer Vision.Zurich:Springer Press,2014:127-141.
[4] HENRIQUES J F,CASERIO R,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,37(3):583-596.
[5] LIU Ting, WANG Gang, YANG Qingxiong. Real-time part-based visual tracking via adaptive correlation filters[C]//Proceedings of the International Conference on Computer Vision and Pattern Recognition.Boston:IEEE Press,2015:4902-4912.
[6] SEVILLA-LARA L,LEARNED-MILLER E.Distribution fields for tracking[C]//Proceedings of the International Conference on Computer Vision and Pattern Recognition.Providence:IEEE Press,2012:1910-1917.
[7] ZHANG Kaihua,ZHANG Lei,YANG Minghsuan.Real-time compressive tracking[C]//Proceedings of the Europe Conference on Computer Vision.Florence:Springer Press,2012:864-877.
[8] KWON J,LEE K M.Tracking by sampling trackers[C]//Proceedings of the International Conference on Computer Vision.Barcelona:IEEE Press,2011:1195-1202.
[9] WU Yi,LIM J W,YANG M H.Online object tracking: A benchmark[C]//Proceedings of the International Conference on Computer Vision and Pattern Recognition.Portland:IEEE Press,2013:2411-2418.
[10] 钟必能,陈雁,沈映菊,等.在线机器学习跟踪算法的进展[J].华侨大学学报(自然科学版),2014,35(1):41-46.DOI:10.11830/ISSN.1000-5013.2014.01.0041
[11] VARMA M,RAY D.Learning the discriminative power-invariance trade-off[C]//Proceedings of the International Conference on Computer Vision.Rio:IEEE Press,2007:1-8.
[12] FELZENSZWALB P F,GIRSHICK R B.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Software Engineering,2010,32(9):1627-1645.
[13] VAN W J,SCHMID C,VERBEEK J.Learning color names for real-world applications[J].IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2009,18(7):1512-1523.

相似文献/References:

[1]钟必能,陈雁,沈映菊,等.在线机器学习跟踪算法的研究进展[J].华侨大学学报(自然科学版),2014,35(1):41.[doi:10.11830/ISSN.1000-5013.2014.01.0041]
 ZHONG Bi-neng,CHEN Yan,SHEN Ying-ju,et al.Research Progress on Visual Tracking Algorithms Based on Online Machine Learning[J].Journal of Huaqiao University(Natural Science),2014,35(3):41.[doi:10.11830/ISSN.1000-5013.2014.01.0041]
[2]谢维波,夏远祥,刘文.改进的核相关滤波目标跟踪算法[J].华侨大学学报(自然科学版),2017,38(3):379.[doi:10.11830/ISSN.1000-5013.201703017]
 XIE Weibo,XIA Yuanxiang,LIU Wen.Improved Object Tracking Algorithm Based on Kernelized Correlation Filter[J].Journal of Huaqiao University(Natural Science),2017,38(3):379.[doi:10.11830/ISSN.1000-5013.201703017]

备注/Memo

备注/Memo:
收稿日期: 2016-11-11
通信作者: 谢维波(1964-),男,教授,博士,主要从事信号处理与视频图像分析的研究.E-mail:xwblxf@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61271383); 华侨大学研究生科研创新能力培育计划资助项目(1400214007)
更新日期/Last Update: 2018-05-20