[1]陈勇,黄国钦,罗光华,等.采用ARMAX模型的精磨非线性振动系统辨识[J].华侨大学学报(自然科学版),2018,39(3):332-336.[doi:10.11830/ISSN.1000-5013.201711030]
 CHEN Yong,HUANG Guoqin,LUO Guanghua,et al.Systemic Identification Research on Nonlinear Vibration System in Precision Grinding Process With ARMAX Model[J].Journal of Huaqiao University(Natural Science),2018,39(3):332-336.[doi:10.11830/ISSN.1000-5013.201711030]
点击复制

采用ARMAX模型的精磨非线性振动系统辨识()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第3期
页码:
332-336
栏目:
出版日期:
2018-05-20

文章信息/Info

Title:
Systemic Identification Research on Nonlinear Vibration System in Precision Grinding Process With ARMAX Model
文章编号:
1000-5013(2018)03-0332-05
作者:
陈勇1 黄国钦2 罗光华3 柯翔敏3
1. 华侨大学 机电及自动化学院, 福建 厦门 361021;2. 华侨大学 制造工程研究院, 福建 厦门 361021;3. 华侨大学 网络与教育技术中心, 福建 厦门 361021
Author(s):
CHEN Yong1 HUANG Guoqin2 LUO Guanghua3 KE Xiangmin3
1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China; 2. Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China; 3. Center of Internet and Education Technology, Huaqiao University, Xiamen 361021, China
关键词:
ARMAX模型 非线性振动 解耦算法 精密磨削 系统辨识
Keywords:
auto-regressive moving average model nonlinear vibration decoupling algorithm precision grinding systemic identification
分类号:
TG391.9
DOI:
10.11830/ISSN.1000-5013.201711030
文献标志码:
A
摘要:
基于外源自回归滑动平均模型(ARMAX),提出改进的动态偏心精密磨削非线性振动系统的二阶振动微分方程解耦算法,获得其传递函数系统模态参数,主要包括模态刚度、模态质量和模态阻尼等的辨识.结合模态辨识理论,优化复模态振型的振动系统传递函数矩阵模态参数的模态留数或模态参数形式辨识算法,并进行相应实验验证.验证结果表明:该复模态振型振动系统解耦算法实现重构传递函数曲线低频区域局部振动特征,计算精度较高,有效应用于精密加工过程非线性振动的预估和控制.
Abstract:
Based on auto-regressive moving average(ARMAX)model, an improved decoupling algorithm of second order differential equation of nonlinear eccentric vibration system in precision grinding was presented to realize the system modal parameters identification such as modal quality, modal damping and modal rigidity. Combining with modal analysis theory, further identification algorithm of transfer function matrixes in complex modes of the vibration system was optimized and validated by experiments. Experimental results shown that the proposed decoupling algorithm is effective to reconstruct vibration features of transfer function curves in low frequency domain with high accuracy and can be well used to predict and control dynamic vibration during precision manufacturing process.

参考文献/References:

[1] INASAKI I,KARPUSCHEWSKI B,LEE H.Grinding chatter-origin and suppression[J].Manufacturing Technology,2001,50(2):515-534.DOI:10.1016/s0007-8506(07)62992-8.
[2] ALTINTAS Y,WECK M.Chatter stability of metal cutting and grinding[J].Manufacturing Technology,2004,53(2):619-642.DOI:10.1016/s0007-8506(07)60032-8.
[3] 王民,冯猛,姚子良,等.基于ARIMA的磨削颤振预测方法[J].北京工业大学学报,2016,42(4):609-613.DOI:10.11936/bjutxb2015070030.
[4] 资嘉磊,黄红武,盛晓敏.超高速平面磨削振动特性试验研究[J].机械与电子,2006(11):10-12.DOI:10.3969/j.issn.1001-2257.2006.11.003.
[5] 杨占玺,孙志勇,韩秋实.CBN砂轮动平衡及电主轴振动测量[J].机械工程与自动化,2005(4):49-51.DOI:10.3969/j.issn.1672-6413.2005.04.017.
[6] 毕果,郭隐彪,郑茂江.砂轮磨削振动对工件表面形貌特征的影响研究[J].机械科学与技术,2013,32(8):1118-1123.DOI:10.13433/j.cnki.1003-8728.2013.08.004.
[7] 杨高伟,李大磊,黄乐.外圆磨削加工过程非线性振动仿真分析[J].制造业自动化,2011,33(12):26-28.DOI:10.3969/j.issn.1009-0134.2011.9
[8] 韩正铜.磨削颤振与磨削表面形貌误差的研究[M].徐州:中国矿业大学出版社,2005.
[9] 陈勇,黄国钦.立铣动力学系统模态参数辨识及实验[J].华侨大学学报(自然科学版),2014,35(1):1-6.DOI:10.11830/ISSN.1000-5013.2014.01.0001.
[10] 陈东祥,田延岭.超精密磨削加工表面形貌建模与仿真方法[J].机械工程学报,2010,46(13):186-191.DOI:10.3901/JME.2010.13.186.
[11] 洪玉芳,汪久根.磨削系统的时间序列建模分析[J].机械科学与技术,2000,19(2):263-265.DOI:10.3321/j.issn.1003-8728.2000.02.032.
[12] 杨叔子,吴雅轩,建平,等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992.

相似文献/References:

[1]史尧臣,李占国,陈国平,等.粘弹性传动带横向非线性振动的稳定性与分岔现象[J].华侨大学学报(自然科学版),2020,41(3):307.[doi:10.11830/ISSN.1000-5013.201907037]
 SHI Yaochen,LI Zhanguo,CHEN Guoping,et al.Stability and Bifurcation of Transverse Nonlinear Vibration in Viscoelastic Belt[J].Journal of Huaqiao University(Natural Science),2020,41(3):307.[doi:10.11830/ISSN.1000-5013.201907037]

备注/Memo

备注/Memo:
收稿日期: 2018-03-07
通信作者: 陈勇(1974-),男,副教授,博士,主要从事精密磨削动力学的研究.E-mail:chenyong@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51235004, 51575198)
更新日期/Last Update: 2018-05-20