[1]张建,彭佳林,杜吉祥.采用共享空间稀疏表示的单幅图像超分辨率方法[J].华侨大学学报(自然科学版),2018,39(2):268-273.[doi:10.11830/ISSN.1000-5013.201604051]
 ZHANG Jian,PENG Jialin,DU Jixiang.Single Image Super-Resolution Algorithm Using Sparse Representation in Common Space[J].Journal of Huaqiao University(Natural Science),2018,39(2):268-273.[doi:10.11830/ISSN.1000-5013.201604051]
点击复制

采用共享空间稀疏表示的单幅图像超分辨率方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第2期
页码:
268-273
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Single Image Super-Resolution Algorithm Using Sparse Representation in Common Space
文章编号:
1000-5013(2018)02-0268-06
作者:
张建 彭佳林 杜吉祥
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
ZHANG Jian PENG Jialin DU Jixiang
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
超分辨率 稀疏表示 典型相关分析 自然图像先验
Keywords:
super resolution sparse representation canonical correlation analysis natural image prior
分类号:
TP391
DOI:
10.11830/ISSN.1000-5013.201604051
文献标志码:
A
摘要:
基于高分辨率图像与其对应的低分辨率图像在转换到特定空间后有高度关联性的假设,提出一种基于共享空间稀疏表示的单幅图像超分辨率方法.该算法应用典型相关分析建立图像块对之间的联系,稀疏正则项刻画理想图像在过完备字典下的稀疏表示.实验结果表明:文中方法改善了算法执行速度,消除了图像主要边缘处的模糊与伪影,增强了图像重建质量.
Abstract:
This paper presents a single image super-resolution algorithm based on sparse representation in common space. The method is based on the assumption that the corresponding high resolution and low resolution images have high correlations coefficients when transformed into special space. We apply canonical correlation analysis to find the relationship between high resolution and low resolution image pairs. The sparsity regularization term constraints the underlying image with a sparse representation in an over-complete dictionary. Experimental results demonstrates that our proposed algorithms not only improve running rate of the performance and eliminate blurring and ringing artifacts around major edges, but also enhance image reconstruction quality.

参考文献/References:

[1] YANG Jianchao,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEE Trans Image Process,2010,19(11):2861-2873.DOI:10.1109/TIP.2010.2050625.
[2] FATTAL R.Image upsampling via imposed edge statistics[C]//ACM Transactions on Graphics.New York:ACM,2007,26(3):95.DOI:10.1145/1275808.1276379.
[3] KIM K I,KWON Y.Single-image super-resolution using sparse regression and natural image prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(6):1127-1133.DOI:10.1109/TPAMI.2010.25.
[4] ALY H A,DUBOIS E.Image up-sampling using total-variation regularization with a new observation model[J].IEEE Transactions on Image Processing,2005,14(10):1647-1659.DOI:10.1109/TIP.2005.851684.
[5] TIMOFTE R,De SMET V,Van GOOL L.A+: Adjusted anchored neighborhood regression for fast super-resolution[M]//Computer Vision-ACCV 2014.Berlin:Springer International Publishing,2014:111-126.DOI:10.1007/978-3-319-16817-3_8.
[6] DONG Chao,LOY C C,HE Kaiming,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,38(2):295-307.DOI:10.1109/TPAMI.2015.2439281.
[7] WANG Zhaowen, LIU Ding, YANG Jianchao, et al.Deep networks for image super-resolution with sparse prior[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago:IEEE Press,2015:370-378.DOI:10.1109/ICCV.2015.50.
[8] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[M].Berlin:Springer,2010:711-730.
[9] AHARON M,ELAD M,BRUCKSTEIN A.The K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.DOI:10.1109/TSP.2006.881199.
[10] RUBINSTEIN R,ZIBULEVSKY M,ELAD M.Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit[J].CS Technion,2008,40(8):1-15.
[11] HUANG Hua,HE Huiting,FAN Xin,et al.Super-resolution of human face image using canonical correlation analysis[J].Pattern Recognition,2010,43(7):2532-2543.DOI:10.1016/j.patcog.2010.02.007.
[12] HOTELLING H.Relations between two sets of variates[J].Biometrika,1936,28(3/4):321-377.DOI:10.2307/2333955.
[13] WOLD S,ESBENSEN K,GELADI P.Principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1987,2(1/2/3):37-52.DOI:10.1016/0169-7439(87)80084-9.
[14] MAIRAL J,BACH F,PONCE J,et al.Online dictionary learning for sparse coding[C]//Proceedings of the 26th Annual International Conference on Machine Learning.NewYork:ACM,2009:689-696.DOI:10.1145/1553374.1553463.
[15] MAIRAL J,BACH F,PONCE J,et al.Online learning for matrix factorization and sparse coding[J].The Journal of Machine Learning Research,2010,11(1):19-60.DOI:10.1145/1756006.1756008.
[16] CHANG Hong,YEUNG D Y,XIONG Yimin.Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on the Computer Vision and Pattern Recognition.Washington D C:IEEE Press,2004:1-7.DOI:10.1109/CVPR.2004.1315043.
[17] TAPPEN M F,RUSSELL B C,FREEMAN W T.Exploiting the sparse derivative prior for super-resolution and image demosaicing[C]//IEEE Workshop on Statistical and Computational Theories of Vision.Nice:IEEE Press,2003:1-28.

相似文献/References:

[1]黄炜钦,黄德天,顾培婷,等.非局部相似和双边滤波的图像超分重建[J].华侨大学学报(自然科学版),2018,39(6):926.[doi:10.11830/ISSN.1000-5013.201702043]
 HUANG Weiqin,HUANG Detian,GU Peiting,et al.Image Super-Resolution Reconstruction Based on Non-Local Similarity and Bilateral Filter[J].Journal of Huaqiao University(Natural Science),2018,39(2):926.[doi:10.11830/ISSN.1000-5013.201702043]
[2]张健,黄德天,林炎明.采用稀疏表示和小波变换的超分辨率重建算法[J].华侨大学学报(自然科学版),2020,41(2):250.[doi:10.11830/ISSN.1000-5013.201908005]
 ZHANG Jian,HUANG Detian,LIN Yanming.Super-Resolution Reconstruction Algorithm Using Sparse Representation and Wavelet Transform[J].Journal of Huaqiao University(Natural Science),2020,41(2):250.[doi:10.11830/ISSN.1000-5013.201908005]
[3]陈剑涛,黄德天,陈健,等.改进的二阶龙格-库塔超分辨率算法[J].华侨大学学报(自然科学版),2022,43(1):127.[doi:10.11830/ISSN.1000-5013.202012009]
 CHEN Jiantao,HUANG Detian,CHEN Jian,et al.Improved Second-Order Runge-Kutta Super-Resolution Algorithm[J].Journal of Huaqiao University(Natural Science),2022,43(2):127.[doi:10.11830/ISSN.1000-5013.202012009]

备注/Memo

备注/Memo:
收稿日期: 2016-04-25
通信作者: 杜吉祥(1977-),男,教授,博士,主要从事图像处理、神经网络、数据挖掘的研究.E-mail:jxdu@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61175121); 福建省自然科学基金资助项目(2013J06014, 2015J01254); 福建省教育厅科技项目(JA14021); 华侨大学中青年教师科研提升计划项目(ZQN-YX108); 华侨大学研究生科研创新能力培育计划项目(1400214008)
更新日期/Last Update: 2018-03-20