[1]李军,李佳,张世义,等.采用EEMD算法与互信息法的机械故障诊断方法[J].华侨大学学报(自然科学版),2018,39(1):7-13.[doi:10.11830/ISSN.1000-5013.201706091]
 LI Jun,LI Jia,ZHANG Shiyi,et al.Mechanical Fault Diagnosis Method Using EEMD Algorithm and Mutual Information Method[J].Journal of Huaqiao University(Natural Science),2018,39(1):7-13.[doi:10.11830/ISSN.1000-5013.201706091]
点击复制

采用EEMD算法与互信息法的机械故障诊断方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第1期
页码:
7-13
栏目:
出版日期:
2018-01-17

文章信息/Info

Title:
Mechanical Fault Diagnosis Method Using EEMD Algorithm and Mutual Information Method
文章编号:
1000-5013(2018)01-0007-07
作者:
李军12 李佳1 张世义1 束海波12
1. 重庆交通大学 机电与车辆工程学院, 重庆 400074;2. 重庆交通大学 城市轨道交通车辆系统集成与控制重庆市重点实验室, 重庆 400074
Author(s):
LI Jun12 LI Jia1 ZHANG Shiyi1 SHU Haibo12
1. College of Mechantronics and Automotive Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Chongqing Key Laboratory of System Integration and Control for Urban Rail Transit Vehicle, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
故障诊断 固有模态函数 Hilbert-Huang变换 总体经验模态分解 互信息法
Keywords:
fault diagnosis intrinsic modal function Hilbert-Huang transform ensemble empirical mode decomposition mutual information
分类号:
TH165.3
DOI:
10.11830/ISSN.1000-5013.201706091
文献标志码:
A
摘要:
提出一种总体经验模态分解(EEMD)算法与互信息法相结合的Hilbert-Huang变换机械故障诊断改进的方法.仿真与实例结果表明:EEMD算法能克服模态混叠弊端,获得具有实际物理含义的固有模态函数(IMF);互信息法能有效剔除虚假分量,使最终IMF分量更加精准且集中突显故障信号特征;所提出方法能有效表征机械故障特征,并进行精确诊断.
Abstract:
An improved Hilbert-Huang transform method for fault diagnosis was proposed which combined ensemble empirical mode decomposition(EEMD)algorithm and mutual information method. The simulation and example results showed that EEMD algorithm can overcome the drawbacks of modal aliasing and obtain the intrinsic modal function(IMF)with practical physical meanings and the mutual information method can effectively eliminate the false components, which makes the final IMF components more accurate and more concentrated on the fault signal characteristics. The proposed method can effectively characterize the mechanical failure and realize accurate diagnosis.

参考文献/References:

[1] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode de composition and the Hilbert spectrum for non-linear non-stationary time series analysis[J].Proceedings of the Royal Society of London,1998,454(1971):903-995.
[2] 陈建灿,刘晓梅.运用EMD分形盒维数的电梯机械故障诊断[J].华侨大学学报(自然科学版),2013,34(5):494-499.DOI:10.11830/ISSN.1000-5013.2013.05.0494.
[3] 郑近德,程军圣,杨宇.改进的EEMD算法及其应用研究[J].振动与冲击,2013,32(21):21-26.DOI:10.3969/j.issn.1000-3835.2013.21.004.
[4] 潘宏侠,张翔.基于GAMP和EEMD的滚动轴承故障诊断研究[J].振动与冲击,2016,35(20):190-196.DOI:10.13465/j.cnki.jvs.2016.20.031.
[5] 沈长青,谢伟达,朱忠奎,等.基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J].振动与冲击,2013,32(2):39-43.DOI:10.3969/j.issn.1000-3835.2013.02.009.
[6] 陈灏,张梅军,黄杰,等.基于改进的EEMD方法与GA-SVM的液压系统泄漏故障诊断[J].液压与气动,2014(9):32-38.DOI:10.11832/j.issn.1000-4858.2014.09.008.
[7] 李亚超,刘政,马增强.一种改进的EEMD算法及其在滚动轴承故障诊断中的应用[J].石家庄铁道大学学报(自然科学版),2016,29(4):66-71.DOI:10.13319/j.cnki.sjztddxxbzrb.2016.04.11.
[8] 黄杰,张梅军,柴凯,等.基于频率截止的EEMD方法研究[J].振动与冲击,2015,34(8):101-105.DOI:10.13465/j.cnki.jvs.2015.08.017.
[9] WANG Tong,ZHANG Mingcai,YU Qihao,et al.Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal[J].Journal of Applied Geophysics,2012,83(7):29-34.DOI:10.1016/j.jappgeo.2012.05.002.
[10] WU Zhaohua,HUANG N E.Ensemble empirical mode decomposition: A noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.DOI:10.1142/S1793536909000047.
[11] 张建峰,王志华.基于EEMD降噪和HMM的采煤机摇臂滚动轴承故障诊断[J].煤矿机械,2016,37(1):205-207.DOI:10.13436/j.mkjx.201601087.
[12] 张海峰,陈君达.顺序故障诊断策略的测试费用期望值估计[J].合肥工业大学学报(自然科学版),2016,39(2):280-282.DOI:10.3969/j.issn.1003-5060.2016.02.026.
[13] 李艳,李英浩,高峰,等.基于互信息法和改进模糊聚类的温度测点优化[J].仪器仪表学报,2015,36(11):2466-2472.DOI:10.3969/j.issn.0254-3087.2015.11.009.
[14] 宋喜忠.基于K-Means和粗糙集神经网络的节点故障诊断[J]. 信阳师范学院学报(自然科学版), 2014, 27(2):292-295.DOI:10.3969/j.issn.1003-0972.2014.02.032.

相似文献/References:

[1]陈俊杰,黄宜坚.利用关联维数进行液压阀故障诊断[J].华侨大学学报(自然科学版),2009,30(4):371.[doi:10.11830/ISSN.1000-5013.2009.04.0371]
 CHEN Jun-jie,HUANG Yi-jian.The Fault Diagnosis of Hydraulic Valve Based on Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2009,30(1):371.[doi:10.11830/ISSN.1000-5013.2009.04.0371]
[2]李志农,刘立州.分数阶经验模态分解方法在机械故障诊断中应用[J].华侨大学学报(自然科学版),2010,31(4):367.[doi:10.11830/ISSN.1000-5013.2010.04.0367]
 LI Zhi-nong,LIU Li-zhou.Application of the Method of Fractional Empirical Mode Decomposition to Machine Fault Diagnosis[J].Journal of Huaqiao University(Natural Science),2010,31(1):367.[doi:10.11830/ISSN.1000-5013.2010.04.0367]
[3]付宝英,王启志.改进型补偿模糊神经网络故障诊断系统[J].华侨大学学报(自然科学版),2012,33(1):1.[doi:10.11830/ISSN.1000-5013.2012.01.0001]
 FU Bao-ying,WANG Qi-zhi.Study of Fault Diagnosis System Based on Improved Compensatory Fuzzy Neural Network[J].Journal of Huaqiao University(Natural Science),2012,33(1):1.[doi:10.11830/ISSN.1000-5013.2012.01.0001]
[4]朱明,李志农,何旭平,等.广义S变换在转子碰摩故障诊断中的应用[J].华侨大学学报(自然科学版),2014,35(2):127.[doi:10.11830/ISSN.1000-5013.2014.02.0127]
 ZHU Ming,LI Zhi-nong,HE Xu-ping,et al.Application of Generalized S-Transformation in Rotor Rub-Impact Fault Diagnosis[J].Journal of Huaqiao University(Natural Science),2014,35(1):127.[doi:10.11830/ISSN.1000-5013.2014.02.0127]
[5]叶丹丹,罗继亮.利用Petri网特征结构的故障诊断方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 YE Dan-dan,LUO Ji-liang.Method for Fault Diagnosis Based on Characteristic Structure of Petri Nets[J].Journal of Huaqiao University(Natural Science),2015,36(1):0.
[6]叶丹丹,罗继亮.利用Petri网特征结构的故障诊断方法[J].华侨大学学报(自然科学版),2014,35(4):378.[doi:10.11830/ISSN.1000-5013.2014.04.0378]
 YE Dan-dan,LUO Ji-liang.Method for Fault Diagnosis Using Characteristic Structure of Petri Nets[J].Journal of Huaqiao University(Natural Science),2014,35(1):378.[doi:10.11830/ISSN.1000-5013.2014.04.0378]

备注/Memo

备注/Memo:
收稿日期: 2017-06-30
通信作者: 李军(1964-),男,教授,博士,主要从事汽车发动机排放与控制、节能与新能源汽车的研究.E-mail:cqleejun@sina.com.
基金项目: 国家自然科学基金资助项目(51305472); 重庆市自然科学基金重大资助项目(CSTC2015ZDCY_ZDZX60010); 重庆市重点实验室科研基金资助项目(CSTC2015YFPT_ZDSYS3000); 重庆市教委科技计划项目(KJ120423)
更新日期/Last Update: 2018-01-20