[1]吴琼,陈锻生.多尺度卷积循环神经网络的情感分类技术[J].华侨大学学报(自然科学版),2017,38(6):875-879.[doi:10.11830/ISSN.1000-5013.201606077]
 WU Qiong,CHEN Duansheng.Sentiment Classification With Multiscale Convolutional Recurrent Neural Network[J].Journal of Huaqiao University(Natural Science),2017,38(6):875-879.[doi:10.11830/ISSN.1000-5013.201606077]
点击复制

多尺度卷积循环神经网络的情感分类技术()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第6期
页码:
875-879
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Sentiment Classification With Multiscale Convolutional Recurrent Neural Network
文章编号:
1000-5013(2017)06-0875-05
作者:
吴琼 陈锻生
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
WU Qiong CHEN Duansheng
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
文本情感分类 卷积神经网络 循环神经网络 长短时记忆 多尺度
Keywords:
text sentiment classification convolutional neural network recurrent neural network long short-term memory multiscale
分类号:
TP391.4
DOI:
10.11830/ISSN.1000-5013.201606077
文献标志码:
A
摘要:
结合卷积神经网络对于特征提取的优势和循环神经网络的长短时记忆算法的优势,提出一种新的基于多尺度的卷积循环神经网络模型,利用卷积神经网络中的多尺寸滤波器提取出具有丰富上下文关系的词特征,循环神经网络中的长短时记忆算法将提取到的词特征与句子的结构联系起来,从而完成文本情感分类任务.实验结果表明:与多种文本情感分类方法相比,文中算法具有较高的精度.
Abstract:
Combining the advantages of convolution neural network(CNN)for feature extraction and recurrent neural network(RNN)for long shot-term memory, a new model based on multiscale convolutional recurrent neural network is proposed. This model utilize multi-size filter of CNN to extract word feature which contain a rich context information and use the long short-term memory algorithm of RNN to reflect the grammatical relations about the word and the sentence, and then completing the sentiment classification task. The experimental results show that: through comparing with many other sentiment classification, this new model has a high accuracy.

参考文献/References:

[1] WANG Sida,MANNING C D.Baselines and bigrams: Simple, good sentiment and topic classification[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACM,2012:90-94.
[2] HINTON G,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):212-223.
[3] WANG Sida,MANNING C D.Fast dropout training[C]//Proceedings of the 30 th International Conference on Machine Learning.Atlanta:JMLR,2013:118-126.
[4] LI Dong,WEI Furu,LIU Shujie,et al.A statistical parsing framework for sentiment classification[J].Computational Linguistics,2014,41(2):293-336.DOI:10.1162/COLI_a_00221.
[5] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.DOI:10.1109/5.726791.
[6] KALCHBRENNER N,GREFENSTETTE E,BLUNSOM P.A convolutional neural network for modelling sentences[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore:Eprint Arxiv,2014:655-665.DOI:10.3115/v1/P14-1062.
[7] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of Conferenceon Empirical Methods in Natural Language Processing.Doha:[s.n.],2014:1746-1751.DOI:10.3115/v1/d14-1181.
[8] SEVERYN A,MOSCHITTI A.Twitter sentiment analysis with deep convolutional neural networks[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2015:959-962.DOI:10.1145/2766462.2767830.
[9] ZHANG Ye,WALLACE B.A sensitivity analysis of(and practitioners’ guide to)convolutional neural networks for sentence classification[EB/OL].(2016-04-06)[2016-06-15] .http://arxiv.org/pdf/1510.03820v4.pdf.
[10] HOCHREITER S,SCHMIDHUBER J.Long short-term memory neural computation[J].Neural Computation,1997,9(8):1735-1780.DOI:10.1162/neco.1997.9.8.1735.
[11] MIKOLOV T,SUTSKEVER I,CHEN Kai,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of Neural Information Processing Systems.South Lake Tahoe:Advances in Neural Information Processing Systems,2013:3111-3119.
[12] ZEILER M.Adadelta: An adaptive learning rate method[EB/OL].(2012-12-22)[2016-06-15] .http://arxiv.org/pdf/1212.5701v1.pdf.

相似文献/References:

[1]邹辉,杜吉祥,翟传敏,等.深度学习与一致性表示空间学习的跨媒体检索[J].华侨大学学报(自然科学版),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
 ZOU Hui,DU Jixiang,ZHAI Chuanmin,et al.Cross-Modal Multimedia Retrieval Based Deep Learning and Shared Representation Space Learning[J].Journal of Huaqiao University(Natural Science),2018,39(6):127.[doi:10.11830/ISSN.1000-5013.201508047]
[2]王改华,李涛,吕朦,等.采用无监督学习算法与卷积的图像分类模型[J].华侨大学学报(自然科学版),2018,39(1):146.[doi:10.11830/ISSN.1000-5013.201703109]
 WANG Gaihua,LI Tao,Lü Meng,et al.Image Classification Model Using Unsupervised Learning Algorithm and Convolution[J].Journal of Huaqiao University(Natural Science),2018,39(6):146.[doi:10.11830/ISSN.1000-5013.201703109]
[3]郑凌云,柳培忠,汪鸿翔.结合高斯核函数的卷积神经网络跟踪算法[J].华侨大学学报(自然科学版),2018,39(5):762.[doi:10.11830/ISSN.1000-5013.201702123]
 ZHENG Lingyun,LIU Peizhong,WANG Hongxiang.Convolution Neural Networks Tracking Algorithm Combined With Gaussian Kernel Function[J].Journal of Huaqiao University(Natural Science),2018,39(6):762.[doi:10.11830/ISSN.1000-5013.201702123]
[4]聂一亮,杜吉祥,杨麟.卷积特征图融合与显著性检测的图像检索[J].华侨大学学报(自然科学版),2018,39(6):937.[doi:10.11830/ISSN.1000-5013.201706028]
 NIE Yiliang,DU Jixiang,YANG Lin.Image Retrieval Based on Convolution Feature Map Fusion and Saliency Detection[J].Journal of Huaqiao University(Natural Science),2018,39(6):937.[doi:10.11830/ISSN.1000-5013.201706028]
[5]刘群,陈锻生.采用ACGAN及多特征融合的高光谱遥感图像分类[J].华侨大学学报(自然科学版),2019,40(1):113.[doi:10.11830/ISSN.1000-5013.201710006]
 LIU Qun,CHEN Duansheng.Classification of Hyperspectral Remote Sensing Images Using ACGAN and Fusion of Multifeature[J].Journal of Huaqiao University(Natural Science),2019,40(6):113.[doi:10.11830/ISSN.1000-5013.201710006]
[6]张圣祥,郑力新,朱建清,等.采用深度学习的快速超分辨率图像重建方法[J].华侨大学学报(自然科学版),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
 ZHANG Shengxiang,ZHENG Lixin,ZHU Jianqing,et al.Fast Super-Resolution Image Reconstruction Method Using Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(6):245.[doi:10.11830/ISSN.1000-5013.201804064]
[7]吴晨茜,陈锻生.表情符向量化算法[J].华侨大学学报(自然科学版),2019,40(3):399.[doi:10.11830/ISSN.1000-5013.201803011]
 WU Chenxi,CHEN Duansheng.Emoticon Vectorization Algrorithm[J].Journal of Huaqiao University(Natural Science),2019,40(6):399.[doi:10.11830/ISSN.1000-5013.201803011]
[8]邱德府,郑力新,谢炜芳,等.深度学习下的高效单幅图像超分辨率重建方法[J].华侨大学学报(自然科学版),2019,40(5):668.[doi:10.11830/ISSN.1000-5013.201905029]
 QIU Defu,ZHENG Lixin,XIE Weifang,et al.Efficient Single Image Super-Resolution Reconstruction Method Under Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(6):668.[doi:10.11830/ISSN.1000-5013.201905029]
[9]陈剑涛,黄德天,陈健,等.改进的二阶龙格-库塔超分辨率算法[J].华侨大学学报(自然科学版),2022,43(1):127.[doi:10.11830/ISSN.1000-5013.202012009]
 CHEN Jiantao,HUANG Detian,CHEN Jian,et al.Improved Second-Order Runge-Kutta Super-Resolution Algorithm[J].Journal of Huaqiao University(Natural Science),2022,43(6):127.[doi:10.11830/ISSN.1000-5013.202012009]

备注/Memo

备注/Memo:
收稿日期: 2016-06-28
通信作者: 陈锻生(1959-),男,教授,博士,主要从事计算机视觉与多媒体技术的研究.E-mail:dschen@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61370006); 福建省科技计划(工业引导性)重点项目(2015H0025)
更新日期/Last Update: 2017-11-20