参考文献/References:
[1] WANG Sida,MANNING C D.Baselines and bigrams: Simple, good sentiment and topic classification[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACM,2012:90-94.
[2] HINTON G,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):212-223.
[3] WANG Sida,MANNING C D.Fast dropout training[C]//Proceedings of the 30 th International Conference on Machine Learning.Atlanta:JMLR,2013:118-126.
[4] LI Dong,WEI Furu,LIU Shujie,et al.A statistical parsing framework for sentiment classification[J].Computational Linguistics,2014,41(2):293-336.DOI:10.1162/COLI_a_00221.
[5] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.DOI:10.1109/5.726791.
[6] KALCHBRENNER N,GREFENSTETTE E,BLUNSOM P.A convolutional neural network for modelling sentences[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore:Eprint Arxiv,2014:655-665.DOI:10.3115/v1/P14-1062.
[7] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of Conferenceon Empirical Methods in Natural Language Processing.Doha:[s.n.],2014:1746-1751.DOI:10.3115/v1/d14-1181.
[8] SEVERYN A,MOSCHITTI A.Twitter sentiment analysis with deep convolutional neural networks[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2015:959-962.DOI:10.1145/2766462.2767830.
[9] ZHANG Ye,WALLACE B.A sensitivity analysis of(and practitioners’ guide to)convolutional neural networks for sentence classification[EB/OL].(2016-04-06)[2016-06-15] .http://arxiv.org/pdf/1510.03820v4.pdf.
[10] HOCHREITER S,SCHMIDHUBER J.Long short-term memory neural computation[J].Neural Computation,1997,9(8):1735-1780.DOI:10.1162/neco.1997.9.8.1735.
[11] MIKOLOV T,SUTSKEVER I,CHEN Kai,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of Neural Information Processing Systems.South Lake Tahoe:Advances in Neural Information Processing Systems,2013:3111-3119.
[12] ZEILER M.Adadelta: An adaptive learning rate method[EB/OL].(2012-12-22)[2016-06-15] .http://arxiv.org/pdf/1212.5701v1.pdf.
相似文献/References:
[1]邹辉,杜吉祥,翟传敏,等.深度学习与一致性表示空间学习的跨媒体检索[J].华侨大学学报(自然科学版),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
ZOU Hui,DU Jixiang,ZHAI Chuanmin,et al.Cross-Modal Multimedia Retrieval Based Deep Learning and Shared Representation Space Learning[J].Journal of Huaqiao University(Natural Science),2018,39(6):127.[doi:10.11830/ISSN.1000-5013.201508047]
[2]王改华,李涛,吕朦,等.采用无监督学习算法与卷积的图像分类模型[J].华侨大学学报(自然科学版),2018,39(1):146.[doi:10.11830/ISSN.1000-5013.201703109]
WANG Gaihua,LI Tao,Lü Meng,et al.Image Classification Model Using Unsupervised Learning Algorithm and Convolution[J].Journal of Huaqiao University(Natural Science),2018,39(6):146.[doi:10.11830/ISSN.1000-5013.201703109]
[3]郑凌云,柳培忠,汪鸿翔.结合高斯核函数的卷积神经网络跟踪算法[J].华侨大学学报(自然科学版),2018,39(5):762.[doi:10.11830/ISSN.1000-5013.201702123]
ZHENG Lingyun,LIU Peizhong,WANG Hongxiang.Convolution Neural Networks Tracking Algorithm Combined With Gaussian Kernel Function[J].Journal of Huaqiao University(Natural Science),2018,39(6):762.[doi:10.11830/ISSN.1000-5013.201702123]
[4]聂一亮,杜吉祥,杨麟.卷积特征图融合与显著性检测的图像检索[J].华侨大学学报(自然科学版),2018,39(6):937.[doi:10.11830/ISSN.1000-5013.201706028]
NIE Yiliang,DU Jixiang,YANG Lin.Image Retrieval Based on Convolution Feature Map Fusion and Saliency Detection[J].Journal of Huaqiao University(Natural Science),2018,39(6):937.[doi:10.11830/ISSN.1000-5013.201706028]
[5]刘群,陈锻生.采用ACGAN及多特征融合的高光谱遥感图像分类[J].华侨大学学报(自然科学版),2019,40(1):113.[doi:10.11830/ISSN.1000-5013.201710006]
LIU Qun,CHEN Duansheng.Classification of Hyperspectral Remote Sensing Images Using ACGAN and Fusion of Multifeature[J].Journal of Huaqiao University(Natural Science),2019,40(6):113.[doi:10.11830/ISSN.1000-5013.201710006]
[6]张圣祥,郑力新,朱建清,等.采用深度学习的快速超分辨率图像重建方法[J].华侨大学学报(自然科学版),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
ZHANG Shengxiang,ZHENG Lixin,ZHU Jianqing,et al.Fast Super-Resolution Image Reconstruction Method Using Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(6):245.[doi:10.11830/ISSN.1000-5013.201804064]
[7]吴晨茜,陈锻生.表情符向量化算法[J].华侨大学学报(自然科学版),2019,40(3):399.[doi:10.11830/ISSN.1000-5013.201803011]
WU Chenxi,CHEN Duansheng.Emoticon Vectorization Algrorithm[J].Journal of Huaqiao University(Natural Science),2019,40(6):399.[doi:10.11830/ISSN.1000-5013.201803011]
[8]邱德府,郑力新,谢炜芳,等.深度学习下的高效单幅图像超分辨率重建方法[J].华侨大学学报(自然科学版),2019,40(5):668.[doi:10.11830/ISSN.1000-5013.201905029]
QIU Defu,ZHENG Lixin,XIE Weifang,et al.Efficient Single Image Super-Resolution Reconstruction Method Under Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(6):668.[doi:10.11830/ISSN.1000-5013.201905029]
[9]陈剑涛,黄德天,陈健,等.改进的二阶龙格-库塔超分辨率算法[J].华侨大学学报(自然科学版),2022,43(1):127.[doi:10.11830/ISSN.1000-5013.202012009]
CHEN Jiantao,HUANG Detian,CHEN Jian,et al.Improved Second-Order Runge-Kutta Super-Resolution Algorithm[J].Journal of Huaqiao University(Natural Science),2022,43(6):127.[doi:10.11830/ISSN.1000-5013.202012009]